Spaces:
Sleeping
Sleeping
""" | |
OpenAI-like chat completion handler | |
For handling OpenAI-like chat completions, like IBM WatsonX, etc. | |
""" | |
import json | |
from typing import Any, Callable, Optional, Union | |
import httpx | |
import litellm | |
from litellm import LlmProviders | |
from litellm.llms.bedrock.chat.invoke_handler import MockResponseIterator | |
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler | |
from litellm.llms.databricks.streaming_utils import ModelResponseIterator | |
from litellm.llms.openai.chat.gpt_transformation import OpenAIGPTConfig | |
from litellm.llms.openai.openai import OpenAIConfig | |
from litellm.types.utils import CustomStreamingDecoder, ModelResponse | |
from litellm.utils import CustomStreamWrapper, ProviderConfigManager | |
from ..common_utils import OpenAILikeBase, OpenAILikeError | |
from .transformation import OpenAILikeChatConfig | |
async def make_call( | |
client: Optional[AsyncHTTPHandler], | |
api_base: str, | |
headers: dict, | |
data: str, | |
model: str, | |
messages: list, | |
logging_obj, | |
streaming_decoder: Optional[CustomStreamingDecoder] = None, | |
fake_stream: bool = False, | |
): | |
if client is None: | |
client = litellm.module_level_aclient | |
response = await client.post( | |
api_base, headers=headers, data=data, stream=not fake_stream | |
) | |
if streaming_decoder is not None: | |
completion_stream: Any = streaming_decoder.aiter_bytes( | |
response.aiter_bytes(chunk_size=1024) | |
) | |
elif fake_stream: | |
model_response = ModelResponse(**response.json()) | |
completion_stream = MockResponseIterator(model_response=model_response) | |
else: | |
completion_stream = ModelResponseIterator( | |
streaming_response=response.aiter_lines(), sync_stream=False | |
) | |
# LOGGING | |
logging_obj.post_call( | |
input=messages, | |
api_key="", | |
original_response=completion_stream, # Pass the completion stream for logging | |
additional_args={"complete_input_dict": data}, | |
) | |
return completion_stream | |
def make_sync_call( | |
client: Optional[HTTPHandler], | |
api_base: str, | |
headers: dict, | |
data: str, | |
model: str, | |
messages: list, | |
logging_obj, | |
streaming_decoder: Optional[CustomStreamingDecoder] = None, | |
fake_stream: bool = False, | |
timeout: Optional[Union[float, httpx.Timeout]] = None, | |
): | |
if client is None: | |
client = litellm.module_level_client # Create a new client if none provided | |
response = client.post( | |
api_base, headers=headers, data=data, stream=not fake_stream, timeout=timeout | |
) | |
if response.status_code != 200: | |
raise OpenAILikeError(status_code=response.status_code, message=response.read()) | |
if streaming_decoder is not None: | |
completion_stream = streaming_decoder.iter_bytes( | |
response.iter_bytes(chunk_size=1024) | |
) | |
elif fake_stream: | |
model_response = ModelResponse(**response.json()) | |
completion_stream = MockResponseIterator(model_response=model_response) | |
else: | |
completion_stream = ModelResponseIterator( | |
streaming_response=response.iter_lines(), sync_stream=True | |
) | |
# LOGGING | |
logging_obj.post_call( | |
input=messages, | |
api_key="", | |
original_response="first stream response received", | |
additional_args={"complete_input_dict": data}, | |
) | |
return completion_stream | |
class OpenAILikeChatHandler(OpenAILikeBase): | |
def __init__(self, **kwargs): | |
super().__init__(**kwargs) | |
async def acompletion_stream_function( | |
self, | |
model: str, | |
messages: list, | |
custom_llm_provider: str, | |
api_base: str, | |
custom_prompt_dict: dict, | |
model_response: ModelResponse, | |
print_verbose: Callable, | |
encoding, | |
api_key, | |
logging_obj, | |
stream, | |
data: dict, | |
optional_params=None, | |
litellm_params=None, | |
logger_fn=None, | |
headers={}, | |
client: Optional[AsyncHTTPHandler] = None, | |
streaming_decoder: Optional[CustomStreamingDecoder] = None, | |
fake_stream: bool = False, | |
) -> CustomStreamWrapper: | |
data["stream"] = True | |
completion_stream = await make_call( | |
client=client, | |
api_base=api_base, | |
headers=headers, | |
data=json.dumps(data), | |
model=model, | |
messages=messages, | |
logging_obj=logging_obj, | |
streaming_decoder=streaming_decoder, | |
) | |
streamwrapper = CustomStreamWrapper( | |
completion_stream=completion_stream, | |
model=model, | |
custom_llm_provider=custom_llm_provider, | |
logging_obj=logging_obj, | |
) | |
return streamwrapper | |
async def acompletion_function( | |
self, | |
model: str, | |
messages: list, | |
api_base: str, | |
custom_prompt_dict: dict, | |
model_response: ModelResponse, | |
custom_llm_provider: str, | |
print_verbose: Callable, | |
client: Optional[AsyncHTTPHandler], | |
encoding, | |
api_key, | |
logging_obj, | |
stream, | |
data: dict, | |
base_model: Optional[str], | |
optional_params: dict, | |
litellm_params=None, | |
logger_fn=None, | |
headers={}, | |
timeout: Optional[Union[float, httpx.Timeout]] = None, | |
json_mode: bool = False, | |
) -> ModelResponse: | |
if timeout is None: | |
timeout = httpx.Timeout(timeout=600.0, connect=5.0) | |
if client is None: | |
client = litellm.module_level_aclient | |
try: | |
response = await client.post( | |
api_base, headers=headers, data=json.dumps(data), timeout=timeout | |
) | |
response.raise_for_status() | |
except httpx.HTTPStatusError as e: | |
raise OpenAILikeError( | |
status_code=e.response.status_code, | |
message=e.response.text, | |
) | |
except httpx.TimeoutException: | |
raise OpenAILikeError(status_code=408, message="Timeout error occurred.") | |
except Exception as e: | |
raise OpenAILikeError(status_code=500, message=str(e)) | |
return OpenAILikeChatConfig._transform_response( | |
model=model, | |
response=response, | |
model_response=model_response, | |
stream=stream, | |
logging_obj=logging_obj, | |
optional_params=optional_params, | |
api_key=api_key, | |
data=data, | |
messages=messages, | |
print_verbose=print_verbose, | |
encoding=encoding, | |
json_mode=json_mode, | |
custom_llm_provider=custom_llm_provider, | |
base_model=base_model, | |
) | |
def completion( | |
self, | |
*, | |
model: str, | |
messages: list, | |
api_base: str, | |
custom_llm_provider: str, | |
custom_prompt_dict: dict, | |
model_response: ModelResponse, | |
print_verbose: Callable, | |
encoding, | |
api_key: Optional[str], | |
logging_obj, | |
optional_params: dict, | |
acompletion=None, | |
litellm_params: dict = {}, | |
logger_fn=None, | |
headers: Optional[dict] = None, | |
timeout: Optional[Union[float, httpx.Timeout]] = None, | |
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None, | |
custom_endpoint: Optional[bool] = None, | |
streaming_decoder: Optional[ | |
CustomStreamingDecoder | |
] = None, # if openai-compatible api needs custom stream decoder - e.g. sagemaker | |
fake_stream: bool = False, | |
): | |
custom_endpoint = custom_endpoint or optional_params.pop( | |
"custom_endpoint", None | |
) | |
base_model: Optional[str] = optional_params.pop("base_model", None) | |
api_base, headers = self._validate_environment( | |
api_base=api_base, | |
api_key=api_key, | |
endpoint_type="chat_completions", | |
custom_endpoint=custom_endpoint, | |
headers=headers, | |
) | |
stream: bool = optional_params.pop("stream", None) or False | |
extra_body = optional_params.pop("extra_body", {}) | |
json_mode = optional_params.pop("json_mode", None) | |
optional_params.pop("max_retries", None) | |
if not fake_stream: | |
optional_params["stream"] = stream | |
if messages is not None and custom_llm_provider is not None: | |
provider_config = ProviderConfigManager.get_provider_chat_config( | |
model=model, provider=LlmProviders(custom_llm_provider) | |
) | |
if isinstance(provider_config, OpenAIGPTConfig) or isinstance( | |
provider_config, OpenAIConfig | |
): | |
messages = provider_config._transform_messages( | |
messages=messages, model=model | |
) | |
data = { | |
"model": model, | |
"messages": messages, | |
**optional_params, | |
**extra_body, | |
} | |
## LOGGING | |
logging_obj.pre_call( | |
input=messages, | |
api_key=api_key, | |
additional_args={ | |
"complete_input_dict": data, | |
"api_base": api_base, | |
"headers": headers, | |
}, | |
) | |
if acompletion is True: | |
if client is None or not isinstance(client, AsyncHTTPHandler): | |
client = None | |
if ( | |
stream is True | |
): # if function call - fake the streaming (need complete blocks for output parsing in openai format) | |
data["stream"] = stream | |
return self.acompletion_stream_function( | |
model=model, | |
messages=messages, | |
data=data, | |
api_base=api_base, | |
custom_prompt_dict=custom_prompt_dict, | |
model_response=model_response, | |
print_verbose=print_verbose, | |
encoding=encoding, | |
api_key=api_key, | |
logging_obj=logging_obj, | |
optional_params=optional_params, | |
stream=stream, | |
litellm_params=litellm_params, | |
logger_fn=logger_fn, | |
headers=headers, | |
client=client, | |
custom_llm_provider=custom_llm_provider, | |
streaming_decoder=streaming_decoder, | |
fake_stream=fake_stream, | |
) | |
else: | |
return self.acompletion_function( | |
model=model, | |
messages=messages, | |
data=data, | |
api_base=api_base, | |
custom_prompt_dict=custom_prompt_dict, | |
custom_llm_provider=custom_llm_provider, | |
model_response=model_response, | |
print_verbose=print_verbose, | |
encoding=encoding, | |
api_key=api_key, | |
logging_obj=logging_obj, | |
optional_params=optional_params, | |
stream=stream, | |
litellm_params=litellm_params, | |
logger_fn=logger_fn, | |
headers=headers, | |
timeout=timeout, | |
base_model=base_model, | |
client=client, | |
json_mode=json_mode, | |
) | |
else: | |
## COMPLETION CALL | |
if stream is True: | |
completion_stream = make_sync_call( | |
client=( | |
client | |
if client is not None and isinstance(client, HTTPHandler) | |
else None | |
), | |
api_base=api_base, | |
headers=headers, | |
data=json.dumps(data), | |
model=model, | |
messages=messages, | |
logging_obj=logging_obj, | |
streaming_decoder=streaming_decoder, | |
fake_stream=fake_stream, | |
timeout=timeout, | |
) | |
# completion_stream.__iter__() | |
return CustomStreamWrapper( | |
completion_stream=completion_stream, | |
model=model, | |
custom_llm_provider=custom_llm_provider, | |
logging_obj=logging_obj, | |
) | |
else: | |
if client is None or not isinstance(client, HTTPHandler): | |
client = HTTPHandler(timeout=timeout) # type: ignore | |
try: | |
response = client.post( | |
url=api_base, headers=headers, data=json.dumps(data) | |
) | |
response.raise_for_status() | |
except httpx.HTTPStatusError as e: | |
raise OpenAILikeError( | |
status_code=e.response.status_code, | |
message=e.response.text, | |
) | |
except httpx.TimeoutException: | |
raise OpenAILikeError( | |
status_code=408, message="Timeout error occurred." | |
) | |
except Exception as e: | |
raise OpenAILikeError(status_code=500, message=str(e)) | |
return OpenAILikeChatConfig._transform_response( | |
model=model, | |
response=response, | |
model_response=model_response, | |
stream=stream, | |
logging_obj=logging_obj, | |
optional_params=optional_params, | |
api_key=api_key, | |
data=data, | |
messages=messages, | |
print_verbose=print_verbose, | |
encoding=encoding, | |
json_mode=json_mode, | |
custom_llm_provider=custom_llm_provider, | |
base_model=base_model, | |
) | |