Shyamnath's picture
Push core package and essential files
469eae6
"""
Transformation logic from Cohere's /v1/rerank format to Jina AI's `/v1/rerank` format.
Why separate file? Make it easy to see how transformation works
Docs - https://jina.ai/reranker
"""
import uuid
from typing import Any, Dict, List, Optional, Tuple, Union
from httpx import URL, Response
from litellm.llms.base_llm.chat.transformation import LiteLLMLoggingObj
from litellm.llms.base_llm.rerank.transformation import BaseRerankConfig
from litellm.types.rerank import (
OptionalRerankParams,
RerankBilledUnits,
RerankResponse,
RerankResponseMeta,
RerankTokens,
)
from litellm.types.utils import ModelInfo
class JinaAIRerankConfig(BaseRerankConfig):
def get_supported_cohere_rerank_params(self, model: str) -> list:
return [
"query",
"top_n",
"documents",
"return_documents",
]
def map_cohere_rerank_params(
self,
non_default_params: dict,
model: str,
drop_params: bool,
query: str,
documents: List[Union[str, Dict[str, Any]]],
custom_llm_provider: Optional[str] = None,
top_n: Optional[int] = None,
rank_fields: Optional[List[str]] = None,
return_documents: Optional[bool] = True,
max_chunks_per_doc: Optional[int] = None,
max_tokens_per_doc: Optional[int] = None,
) -> OptionalRerankParams:
optional_params = {}
supported_params = self.get_supported_cohere_rerank_params(model)
for k, v in non_default_params.items():
if k in supported_params:
optional_params[k] = v
return OptionalRerankParams(
**optional_params,
)
def get_complete_url(self, api_base: Optional[str], model: str) -> str:
base_path = "/v1/rerank"
if api_base is None:
return "https://api.jina.ai/v1/rerank"
base = URL(api_base)
# Reconstruct URL with cleaned path
cleaned_base = str(base.copy_with(path=base_path))
return cleaned_base
def transform_rerank_request(
self, model: str, optional_rerank_params: OptionalRerankParams, headers: Dict
) -> Dict:
return {"model": model, **optional_rerank_params}
def transform_rerank_response(
self,
model: str,
raw_response: Response,
model_response: RerankResponse,
logging_obj: LiteLLMLoggingObj,
api_key: Optional[str] = None,
request_data: Dict = {},
optional_params: Dict = {},
litellm_params: Dict = {},
) -> RerankResponse:
if raw_response.status_code != 200:
raise Exception(raw_response.text)
logging_obj.post_call(original_response=raw_response.text)
_json_response = raw_response.json()
_billed_units = RerankBilledUnits(**_json_response.get("usage", {}))
_tokens = RerankTokens(**_json_response.get("usage", {}))
rerank_meta = RerankResponseMeta(billed_units=_billed_units, tokens=_tokens)
_results: Optional[List[dict]] = _json_response.get("results")
if _results is None:
raise ValueError(f"No results found in the response={_json_response}")
return RerankResponse(
id=_json_response.get("id") or str(uuid.uuid4()),
results=_results, # type: ignore
meta=rerank_meta,
) # Return response
def validate_environment(
self, headers: Dict, model: str, api_key: Optional[str] = None
) -> Dict:
if api_key is None:
raise ValueError(
"api_key is required. Set via `api_key` parameter or `JINA_API_KEY` environment variable."
)
return {
"accept": "application/json",
"content-type": "application/json",
"authorization": f"Bearer {api_key}",
}
def calculate_rerank_cost(
self,
model: str,
custom_llm_provider: Optional[str] = None,
billed_units: Optional[RerankBilledUnits] = None,
model_info: Optional[ModelInfo] = None,
) -> Tuple[float, float]:
"""
Jina AI reranker is priced at $0.000000018 per token.
"""
if (
model_info is None
or "input_cost_per_token" not in model_info
or model_info["input_cost_per_token"] is None
or billed_units is None
):
return 0.0, 0.0
total_tokens = billed_units.get("total_tokens")
if total_tokens is None:
return 0.0, 0.0
input_cost = model_info["input_cost_per_token"] * total_tokens
return input_cost, 0.0