Spaces:
Sleeping
Sleeping
""" | |
Transformation logic from Cohere's /v1/rerank format to Jina AI's `/v1/rerank` format. | |
Why separate file? Make it easy to see how transformation works | |
Docs - https://jina.ai/reranker | |
""" | |
import uuid | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
from httpx import URL, Response | |
from litellm.llms.base_llm.chat.transformation import LiteLLMLoggingObj | |
from litellm.llms.base_llm.rerank.transformation import BaseRerankConfig | |
from litellm.types.rerank import ( | |
OptionalRerankParams, | |
RerankBilledUnits, | |
RerankResponse, | |
RerankResponseMeta, | |
RerankTokens, | |
) | |
from litellm.types.utils import ModelInfo | |
class JinaAIRerankConfig(BaseRerankConfig): | |
def get_supported_cohere_rerank_params(self, model: str) -> list: | |
return [ | |
"query", | |
"top_n", | |
"documents", | |
"return_documents", | |
] | |
def map_cohere_rerank_params( | |
self, | |
non_default_params: dict, | |
model: str, | |
drop_params: bool, | |
query: str, | |
documents: List[Union[str, Dict[str, Any]]], | |
custom_llm_provider: Optional[str] = None, | |
top_n: Optional[int] = None, | |
rank_fields: Optional[List[str]] = None, | |
return_documents: Optional[bool] = True, | |
max_chunks_per_doc: Optional[int] = None, | |
max_tokens_per_doc: Optional[int] = None, | |
) -> OptionalRerankParams: | |
optional_params = {} | |
supported_params = self.get_supported_cohere_rerank_params(model) | |
for k, v in non_default_params.items(): | |
if k in supported_params: | |
optional_params[k] = v | |
return OptionalRerankParams( | |
**optional_params, | |
) | |
def get_complete_url(self, api_base: Optional[str], model: str) -> str: | |
base_path = "/v1/rerank" | |
if api_base is None: | |
return "https://api.jina.ai/v1/rerank" | |
base = URL(api_base) | |
# Reconstruct URL with cleaned path | |
cleaned_base = str(base.copy_with(path=base_path)) | |
return cleaned_base | |
def transform_rerank_request( | |
self, model: str, optional_rerank_params: OptionalRerankParams, headers: Dict | |
) -> Dict: | |
return {"model": model, **optional_rerank_params} | |
def transform_rerank_response( | |
self, | |
model: str, | |
raw_response: Response, | |
model_response: RerankResponse, | |
logging_obj: LiteLLMLoggingObj, | |
api_key: Optional[str] = None, | |
request_data: Dict = {}, | |
optional_params: Dict = {}, | |
litellm_params: Dict = {}, | |
) -> RerankResponse: | |
if raw_response.status_code != 200: | |
raise Exception(raw_response.text) | |
logging_obj.post_call(original_response=raw_response.text) | |
_json_response = raw_response.json() | |
_billed_units = RerankBilledUnits(**_json_response.get("usage", {})) | |
_tokens = RerankTokens(**_json_response.get("usage", {})) | |
rerank_meta = RerankResponseMeta(billed_units=_billed_units, tokens=_tokens) | |
_results: Optional[List[dict]] = _json_response.get("results") | |
if _results is None: | |
raise ValueError(f"No results found in the response={_json_response}") | |
return RerankResponse( | |
id=_json_response.get("id") or str(uuid.uuid4()), | |
results=_results, # type: ignore | |
meta=rerank_meta, | |
) # Return response | |
def validate_environment( | |
self, headers: Dict, model: str, api_key: Optional[str] = None | |
) -> Dict: | |
if api_key is None: | |
raise ValueError( | |
"api_key is required. Set via `api_key` parameter or `JINA_API_KEY` environment variable." | |
) | |
return { | |
"accept": "application/json", | |
"content-type": "application/json", | |
"authorization": f"Bearer {api_key}", | |
} | |
def calculate_rerank_cost( | |
self, | |
model: str, | |
custom_llm_provider: Optional[str] = None, | |
billed_units: Optional[RerankBilledUnits] = None, | |
model_info: Optional[ModelInfo] = None, | |
) -> Tuple[float, float]: | |
""" | |
Jina AI reranker is priced at $0.000000018 per token. | |
""" | |
if ( | |
model_info is None | |
or "input_cost_per_token" not in model_info | |
or model_info["input_cost_per_token"] is None | |
or billed_units is None | |
): | |
return 0.0, 0.0 | |
total_tokens = billed_units.get("total_tokens") | |
if total_tokens is None: | |
return 0.0, 0.0 | |
input_cost = model_info["input_cost_per_token"] * total_tokens | |
return input_cost, 0.0 | |