Spaces:
Sleeping
Sleeping
from typing import Dict, List, Optional | |
import litellm | |
from litellm.litellm_core_utils.prompt_templates.factory import ( | |
convert_generic_image_chunk_to_openai_image_obj, | |
convert_to_anthropic_image_obj, | |
) | |
from litellm.types.llms.openai import AllMessageValues | |
from litellm.types.llms.vertex_ai import ContentType, PartType | |
from litellm.utils import supports_reasoning | |
from ...vertex_ai.gemini.transformation import _gemini_convert_messages_with_history | |
from ...vertex_ai.gemini.vertex_and_google_ai_studio_gemini import VertexGeminiConfig | |
class GoogleAIStudioGeminiConfig(VertexGeminiConfig): | |
""" | |
Reference: https://ai.google.dev/api/rest/v1beta/GenerationConfig | |
The class `GoogleAIStudioGeminiConfig` provides configuration for the Google AI Studio's Gemini API interface. Below are the parameters: | |
- `temperature` (float): This controls the degree of randomness in token selection. | |
- `max_output_tokens` (integer): This sets the limitation for the maximum amount of token in the text output. In this case, the default value is 256. | |
- `top_p` (float): The tokens are selected from the most probable to the least probable until the sum of their probabilities equals the `top_p` value. Default is 0.95. | |
- `top_k` (integer): The value of `top_k` determines how many of the most probable tokens are considered in the selection. For example, a `top_k` of 1 means the selected token is the most probable among all tokens. The default value is 40. | |
- `response_mime_type` (str): The MIME type of the response. The default value is 'text/plain'. Other values - `application/json`. | |
- `response_schema` (dict): Optional. Output response schema of the generated candidate text when response mime type can have schema. Schema can be objects, primitives or arrays and is a subset of OpenAPI schema. If set, a compatible response_mime_type must also be set. Compatible mimetypes: application/json: Schema for JSON response. | |
- `candidate_count` (int): Number of generated responses to return. | |
- `stop_sequences` (List[str]): The set of character sequences (up to 5) that will stop output generation. If specified, the API will stop at the first appearance of a stop sequence. The stop sequence will not be included as part of the response. | |
Note: Please make sure to modify the default parameters as required for your use case. | |
""" | |
temperature: Optional[float] = None | |
max_output_tokens: Optional[int] = None | |
top_p: Optional[float] = None | |
top_k: Optional[int] = None | |
response_mime_type: Optional[str] = None | |
response_schema: Optional[dict] = None | |
candidate_count: Optional[int] = None | |
stop_sequences: Optional[list] = None | |
def __init__( | |
self, | |
temperature: Optional[float] = None, | |
max_output_tokens: Optional[int] = None, | |
top_p: Optional[float] = None, | |
top_k: Optional[int] = None, | |
response_mime_type: Optional[str] = None, | |
response_schema: Optional[dict] = None, | |
candidate_count: Optional[int] = None, | |
stop_sequences: Optional[list] = None, | |
) -> None: | |
locals_ = locals().copy() | |
for key, value in locals_.items(): | |
if key != "self" and value is not None: | |
setattr(self.__class__, key, value) | |
def get_config(cls): | |
return super().get_config() | |
def get_supported_openai_params(self, model: str) -> List[str]: | |
supported_params = [ | |
"temperature", | |
"top_p", | |
"max_tokens", | |
"max_completion_tokens", | |
"stream", | |
"tools", | |
"tool_choice", | |
"functions", | |
"response_format", | |
"n", | |
"stop", | |
"logprobs", | |
"frequency_penalty", | |
"modalities", | |
] | |
if supports_reasoning(model): | |
supported_params.append("reasoning_effort") | |
supported_params.append("thinking") | |
return supported_params | |
def map_openai_params( | |
self, | |
non_default_params: Dict, | |
optional_params: Dict, | |
model: str, | |
drop_params: bool, | |
) -> Dict: | |
if litellm.vertex_ai_safety_settings is not None: | |
optional_params["safety_settings"] = litellm.vertex_ai_safety_settings | |
return super().map_openai_params( | |
model=model, | |
non_default_params=non_default_params, | |
optional_params=optional_params, | |
drop_params=drop_params, | |
) | |
def _transform_messages( | |
self, messages: List[AllMessageValues] | |
) -> List[ContentType]: | |
""" | |
Google AI Studio Gemini does not support image urls in messages. | |
""" | |
for message in messages: | |
_message_content = message.get("content") | |
if _message_content is not None and isinstance(_message_content, list): | |
_parts: List[PartType] = [] | |
for element in _message_content: | |
if element.get("type") == "image_url": | |
img_element = element | |
_image_url: Optional[str] = None | |
format: Optional[str] = None | |
if isinstance(img_element.get("image_url"), dict): | |
_image_url = img_element["image_url"].get("url") # type: ignore | |
format = img_element["image_url"].get("format") # type: ignore | |
else: | |
_image_url = img_element.get("image_url") # type: ignore | |
if _image_url and "https://" in _image_url: | |
image_obj = convert_to_anthropic_image_obj( | |
_image_url, format=format | |
) | |
img_element["image_url"] = ( # type: ignore | |
convert_generic_image_chunk_to_openai_image_obj( | |
image_obj | |
) | |
) | |
return _gemini_convert_messages_with_history(messages=messages) | |