Spaces:
Paused
Paused
| from typing import Dict, List, Optional | |
| import litellm | |
| from litellm.litellm_core_utils.prompt_templates.factory import ( | |
| convert_generic_image_chunk_to_openai_image_obj, | |
| convert_to_anthropic_image_obj, | |
| ) | |
| from litellm.types.llms.openai import AllMessageValues | |
| from litellm.types.llms.vertex_ai import ContentType, PartType | |
| from litellm.utils import supports_reasoning | |
| from ...vertex_ai.gemini.transformation import _gemini_convert_messages_with_history | |
| from ...vertex_ai.gemini.vertex_and_google_ai_studio_gemini import VertexGeminiConfig | |
| class GoogleAIStudioGeminiConfig(VertexGeminiConfig): | |
| """ | |
| Reference: https://ai.google.dev/api/rest/v1beta/GenerationConfig | |
| The class `GoogleAIStudioGeminiConfig` provides configuration for the Google AI Studio's Gemini API interface. Below are the parameters: | |
| - `temperature` (float): This controls the degree of randomness in token selection. | |
| - `max_output_tokens` (integer): This sets the limitation for the maximum amount of token in the text output. In this case, the default value is 256. | |
| - `top_p` (float): The tokens are selected from the most probable to the least probable until the sum of their probabilities equals the `top_p` value. Default is 0.95. | |
| - `top_k` (integer): The value of `top_k` determines how many of the most probable tokens are considered in the selection. For example, a `top_k` of 1 means the selected token is the most probable among all tokens. The default value is 40. | |
| - `response_mime_type` (str): The MIME type of the response. The default value is 'text/plain'. Other values - `application/json`. | |
| - `response_schema` (dict): Optional. Output response schema of the generated candidate text when response mime type can have schema. Schema can be objects, primitives or arrays and is a subset of OpenAPI schema. If set, a compatible response_mime_type must also be set. Compatible mimetypes: application/json: Schema for JSON response. | |
| - `candidate_count` (int): Number of generated responses to return. | |
| - `stop_sequences` (List[str]): The set of character sequences (up to 5) that will stop output generation. If specified, the API will stop at the first appearance of a stop sequence. The stop sequence will not be included as part of the response. | |
| Note: Please make sure to modify the default parameters as required for your use case. | |
| """ | |
| temperature: Optional[float] = None | |
| max_output_tokens: Optional[int] = None | |
| top_p: Optional[float] = None | |
| top_k: Optional[int] = None | |
| response_mime_type: Optional[str] = None | |
| response_schema: Optional[dict] = None | |
| candidate_count: Optional[int] = None | |
| stop_sequences: Optional[list] = None | |
| def __init__( | |
| self, | |
| temperature: Optional[float] = None, | |
| max_output_tokens: Optional[int] = None, | |
| top_p: Optional[float] = None, | |
| top_k: Optional[int] = None, | |
| response_mime_type: Optional[str] = None, | |
| response_schema: Optional[dict] = None, | |
| candidate_count: Optional[int] = None, | |
| stop_sequences: Optional[list] = None, | |
| ) -> None: | |
| locals_ = locals().copy() | |
| for key, value in locals_.items(): | |
| if key != "self" and value is not None: | |
| setattr(self.__class__, key, value) | |
| def get_config(cls): | |
| return super().get_config() | |
| def get_supported_openai_params(self, model: str) -> List[str]: | |
| supported_params = [ | |
| "temperature", | |
| "top_p", | |
| "max_tokens", | |
| "max_completion_tokens", | |
| "stream", | |
| "tools", | |
| "tool_choice", | |
| "functions", | |
| "response_format", | |
| "n", | |
| "stop", | |
| "logprobs", | |
| "frequency_penalty", | |
| "modalities", | |
| ] | |
| if supports_reasoning(model): | |
| supported_params.append("reasoning_effort") | |
| supported_params.append("thinking") | |
| return supported_params | |
| def map_openai_params( | |
| self, | |
| non_default_params: Dict, | |
| optional_params: Dict, | |
| model: str, | |
| drop_params: bool, | |
| ) -> Dict: | |
| if litellm.vertex_ai_safety_settings is not None: | |
| optional_params["safety_settings"] = litellm.vertex_ai_safety_settings | |
| return super().map_openai_params( | |
| model=model, | |
| non_default_params=non_default_params, | |
| optional_params=optional_params, | |
| drop_params=drop_params, | |
| ) | |
| def _transform_messages( | |
| self, messages: List[AllMessageValues] | |
| ) -> List[ContentType]: | |
| """ | |
| Google AI Studio Gemini does not support image urls in messages. | |
| """ | |
| for message in messages: | |
| _message_content = message.get("content") | |
| if _message_content is not None and isinstance(_message_content, list): | |
| _parts: List[PartType] = [] | |
| for element in _message_content: | |
| if element.get("type") == "image_url": | |
| img_element = element | |
| _image_url: Optional[str] = None | |
| format: Optional[str] = None | |
| if isinstance(img_element.get("image_url"), dict): | |
| _image_url = img_element["image_url"].get("url") # type: ignore | |
| format = img_element["image_url"].get("format") # type: ignore | |
| else: | |
| _image_url = img_element.get("image_url") # type: ignore | |
| if _image_url and "https://" in _image_url: | |
| image_obj = convert_to_anthropic_image_obj( | |
| _image_url, format=format | |
| ) | |
| img_element["image_url"] = ( # type: ignore | |
| convert_generic_image_chunk_to_openai_image_obj( | |
| image_obj | |
| ) | |
| ) | |
| return _gemini_convert_messages_with_history(messages=messages) | |