Spaces:
Sleeping
Sleeping
import time | |
from typing import TYPE_CHECKING, Any, AsyncIterator, Iterator, List, Optional, Union | |
import httpx | |
import litellm | |
from litellm.litellm_core_utils.prompt_templates.common_utils import ( | |
convert_content_list_to_str, | |
) | |
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException | |
from litellm.types.llms.openai import AllMessageValues | |
from litellm.types.utils import Choices, Message, ModelResponse, Usage | |
from ..common_utils import CohereError | |
from ..common_utils import ModelResponseIterator as CohereModelResponseIterator | |
from ..common_utils import validate_environment as cohere_validate_environment | |
if TYPE_CHECKING: | |
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj | |
LiteLLMLoggingObj = _LiteLLMLoggingObj | |
else: | |
LiteLLMLoggingObj = Any | |
class CohereTextConfig(BaseConfig): | |
""" | |
Reference: https://docs.cohere.com/reference/generate | |
The class `CohereConfig` provides configuration for the Cohere's API interface. Below are the parameters: | |
- `num_generations` (integer): Maximum number of generations returned. Default is 1, with a minimum value of 1 and a maximum value of 5. | |
- `max_tokens` (integer): Maximum number of tokens the model will generate as part of the response. Default value is 20. | |
- `truncate` (string): Specifies how the API handles inputs longer than maximum token length. Options include NONE, START, END. Default is END. | |
- `temperature` (number): A non-negative float controlling the randomness in generation. Lower temperatures result in less random generations. Default is 0.75. | |
- `preset` (string): Identifier of a custom preset, a combination of parameters such as prompt, temperature etc. | |
- `end_sequences` (array of strings): The generated text gets cut at the beginning of the earliest occurrence of an end sequence, which will be excluded from the text. | |
- `stop_sequences` (array of strings): The generated text gets cut at the end of the earliest occurrence of a stop sequence, which will be included in the text. | |
- `k` (integer): Limits generation at each step to top `k` most likely tokens. Default is 0. | |
- `p` (number): Limits generation at each step to most likely tokens with total probability mass of `p`. Default is 0. | |
- `frequency_penalty` (number): Reduces repetitiveness of generated tokens. Higher values apply stronger penalties to previously occurred tokens. | |
- `presence_penalty` (number): Reduces repetitiveness of generated tokens. Similar to frequency_penalty, but this penalty applies equally to all tokens that have already appeared. | |
- `return_likelihoods` (string): Specifies how and if token likelihoods are returned with the response. Options include GENERATION, ALL and NONE. | |
- `logit_bias` (object): Used to prevent the model from generating unwanted tokens or to incentivize it to include desired tokens. e.g. {"hello_world": 1233} | |
""" | |
num_generations: Optional[int] = None | |
max_tokens: Optional[int] = None | |
truncate: Optional[str] = None | |
temperature: Optional[int] = None | |
preset: Optional[str] = None | |
end_sequences: Optional[list] = None | |
stop_sequences: Optional[list] = None | |
k: Optional[int] = None | |
p: Optional[int] = None | |
frequency_penalty: Optional[int] = None | |
presence_penalty: Optional[int] = None | |
return_likelihoods: Optional[str] = None | |
logit_bias: Optional[dict] = None | |
def __init__( | |
self, | |
num_generations: Optional[int] = None, | |
max_tokens: Optional[int] = None, | |
truncate: Optional[str] = None, | |
temperature: Optional[int] = None, | |
preset: Optional[str] = None, | |
end_sequences: Optional[list] = None, | |
stop_sequences: Optional[list] = None, | |
k: Optional[int] = None, | |
p: Optional[int] = None, | |
frequency_penalty: Optional[int] = None, | |
presence_penalty: Optional[int] = None, | |
return_likelihoods: Optional[str] = None, | |
logit_bias: Optional[dict] = None, | |
) -> None: | |
locals_ = locals().copy() | |
for key, value in locals_.items(): | |
if key != "self" and value is not None: | |
setattr(self.__class__, key, value) | |
def get_config(cls): | |
return super().get_config() | |
def validate_environment( | |
self, | |
headers: dict, | |
model: str, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
api_key: Optional[str] = None, | |
api_base: Optional[str] = None, | |
) -> dict: | |
return cohere_validate_environment( | |
headers=headers, | |
model=model, | |
messages=messages, | |
optional_params=optional_params, | |
api_key=api_key, | |
) | |
def get_error_class( | |
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers] | |
) -> BaseLLMException: | |
return CohereError(status_code=status_code, message=error_message) | |
def get_supported_openai_params(self, model: str) -> List: | |
return [ | |
"stream", | |
"temperature", | |
"max_tokens", | |
"logit_bias", | |
"top_p", | |
"frequency_penalty", | |
"presence_penalty", | |
"stop", | |
"n", | |
"extra_headers", | |
] | |
def map_openai_params( | |
self, | |
non_default_params: dict, | |
optional_params: dict, | |
model: str, | |
drop_params: bool, | |
) -> dict: | |
for param, value in non_default_params.items(): | |
if param == "stream": | |
optional_params["stream"] = value | |
elif param == "temperature": | |
optional_params["temperature"] = value | |
elif param == "max_tokens": | |
optional_params["max_tokens"] = value | |
elif param == "n": | |
optional_params["num_generations"] = value | |
elif param == "logit_bias": | |
optional_params["logit_bias"] = value | |
elif param == "top_p": | |
optional_params["p"] = value | |
elif param == "frequency_penalty": | |
optional_params["frequency_penalty"] = value | |
elif param == "presence_penalty": | |
optional_params["presence_penalty"] = value | |
elif param == "stop": | |
optional_params["stop_sequences"] = value | |
return optional_params | |
def transform_request( | |
self, | |
model: str, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
headers: dict, | |
) -> dict: | |
prompt = " ".join( | |
convert_content_list_to_str(message=message) for message in messages | |
) | |
## Load Config | |
config = litellm.CohereConfig.get_config() | |
for k, v in config.items(): | |
if ( | |
k not in optional_params | |
): # completion(top_k=3) > cohere_config(top_k=3) <- allows for dynamic variables to be passed in | |
optional_params[k] = v | |
## Handle Tool Calling | |
if "tools" in optional_params: | |
_is_function_call = True | |
tool_calling_system_prompt = self._construct_cohere_tool_for_completion_api( | |
tools=optional_params["tools"] | |
) | |
optional_params["tools"] = tool_calling_system_prompt | |
data = { | |
"model": model, | |
"prompt": prompt, | |
**optional_params, | |
} | |
return data | |
def transform_response( | |
self, | |
model: str, | |
raw_response: httpx.Response, | |
model_response: ModelResponse, | |
logging_obj: LiteLLMLoggingObj, | |
request_data: dict, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
encoding: Any, | |
api_key: Optional[str] = None, | |
json_mode: Optional[bool] = None, | |
) -> ModelResponse: | |
prompt = " ".join( | |
convert_content_list_to_str(message=message) for message in messages | |
) | |
completion_response = raw_response.json() | |
choices_list = [] | |
for idx, item in enumerate(completion_response["generations"]): | |
if len(item["text"]) > 0: | |
message_obj = Message(content=item["text"]) | |
else: | |
message_obj = Message(content=None) | |
choice_obj = Choices( | |
finish_reason=item["finish_reason"], | |
index=idx + 1, | |
message=message_obj, | |
) | |
choices_list.append(choice_obj) | |
model_response.choices = choices_list # type: ignore | |
## CALCULATING USAGE | |
prompt_tokens = len(encoding.encode(prompt)) | |
completion_tokens = len( | |
encoding.encode(model_response["choices"][0]["message"].get("content", "")) | |
) | |
model_response.created = int(time.time()) | |
model_response.model = model | |
usage = Usage( | |
prompt_tokens=prompt_tokens, | |
completion_tokens=completion_tokens, | |
total_tokens=prompt_tokens + completion_tokens, | |
) | |
setattr(model_response, "usage", usage) | |
return model_response | |
def _construct_cohere_tool_for_completion_api( | |
self, | |
tools: Optional[List] = None, | |
) -> dict: | |
if tools is None: | |
tools = [] | |
return {"tools": tools} | |
def get_model_response_iterator( | |
self, | |
streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse], | |
sync_stream: bool, | |
json_mode: Optional[bool] = False, | |
): | |
return CohereModelResponseIterator( | |
streaming_response=streaming_response, | |
sync_stream=sync_stream, | |
json_mode=json_mode, | |
) | |