Spaces:
				
			
			
	
			
			
		Paused
		
	
	
	
			
			
	
	
	
	
		
		
		Paused
		
	| import time | |
| from typing import TYPE_CHECKING, Any, AsyncIterator, Iterator, List, Optional, Union | |
| import httpx | |
| import litellm | |
| from litellm.litellm_core_utils.prompt_templates.common_utils import ( | |
| convert_content_list_to_str, | |
| ) | |
| from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException | |
| from litellm.types.llms.openai import AllMessageValues | |
| from litellm.types.utils import Choices, Message, ModelResponse, Usage | |
| from ..common_utils import CohereError | |
| from ..common_utils import ModelResponseIterator as CohereModelResponseIterator | |
| from ..common_utils import validate_environment as cohere_validate_environment | |
| if TYPE_CHECKING: | |
| from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj | |
| LiteLLMLoggingObj = _LiteLLMLoggingObj | |
| else: | |
| LiteLLMLoggingObj = Any | |
| class CohereTextConfig(BaseConfig): | |
| """ | |
| Reference: https://docs.cohere.com/reference/generate | |
| The class `CohereConfig` provides configuration for the Cohere's API interface. Below are the parameters: | |
| - `num_generations` (integer): Maximum number of generations returned. Default is 1, with a minimum value of 1 and a maximum value of 5. | |
| - `max_tokens` (integer): Maximum number of tokens the model will generate as part of the response. Default value is 20. | |
| - `truncate` (string): Specifies how the API handles inputs longer than maximum token length. Options include NONE, START, END. Default is END. | |
| - `temperature` (number): A non-negative float controlling the randomness in generation. Lower temperatures result in less random generations. Default is 0.75. | |
| - `preset` (string): Identifier of a custom preset, a combination of parameters such as prompt, temperature etc. | |
| - `end_sequences` (array of strings): The generated text gets cut at the beginning of the earliest occurrence of an end sequence, which will be excluded from the text. | |
| - `stop_sequences` (array of strings): The generated text gets cut at the end of the earliest occurrence of a stop sequence, which will be included in the text. | |
| - `k` (integer): Limits generation at each step to top `k` most likely tokens. Default is 0. | |
| - `p` (number): Limits generation at each step to most likely tokens with total probability mass of `p`. Default is 0. | |
| - `frequency_penalty` (number): Reduces repetitiveness of generated tokens. Higher values apply stronger penalties to previously occurred tokens. | |
| - `presence_penalty` (number): Reduces repetitiveness of generated tokens. Similar to frequency_penalty, but this penalty applies equally to all tokens that have already appeared. | |
| - `return_likelihoods` (string): Specifies how and if token likelihoods are returned with the response. Options include GENERATION, ALL and NONE. | |
| - `logit_bias` (object): Used to prevent the model from generating unwanted tokens or to incentivize it to include desired tokens. e.g. {"hello_world": 1233} | |
| """ | |
| num_generations: Optional[int] = None | |
| max_tokens: Optional[int] = None | |
| truncate: Optional[str] = None | |
| temperature: Optional[int] = None | |
| preset: Optional[str] = None | |
| end_sequences: Optional[list] = None | |
| stop_sequences: Optional[list] = None | |
| k: Optional[int] = None | |
| p: Optional[int] = None | |
| frequency_penalty: Optional[int] = None | |
| presence_penalty: Optional[int] = None | |
| return_likelihoods: Optional[str] = None | |
| logit_bias: Optional[dict] = None | |
| def __init__( | |
| self, | |
| num_generations: Optional[int] = None, | |
| max_tokens: Optional[int] = None, | |
| truncate: Optional[str] = None, | |
| temperature: Optional[int] = None, | |
| preset: Optional[str] = None, | |
| end_sequences: Optional[list] = None, | |
| stop_sequences: Optional[list] = None, | |
| k: Optional[int] = None, | |
| p: Optional[int] = None, | |
| frequency_penalty: Optional[int] = None, | |
| presence_penalty: Optional[int] = None, | |
| return_likelihoods: Optional[str] = None, | |
| logit_bias: Optional[dict] = None, | |
| ) -> None: | |
| locals_ = locals().copy() | |
| for key, value in locals_.items(): | |
| if key != "self" and value is not None: | |
| setattr(self.__class__, key, value) | |
| def get_config(cls): | |
| return super().get_config() | |
| def validate_environment( | |
| self, | |
| headers: dict, | |
| model: str, | |
| messages: List[AllMessageValues], | |
| optional_params: dict, | |
| litellm_params: dict, | |
| api_key: Optional[str] = None, | |
| api_base: Optional[str] = None, | |
| ) -> dict: | |
| return cohere_validate_environment( | |
| headers=headers, | |
| model=model, | |
| messages=messages, | |
| optional_params=optional_params, | |
| api_key=api_key, | |
| ) | |
| def get_error_class( | |
| self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers] | |
| ) -> BaseLLMException: | |
| return CohereError(status_code=status_code, message=error_message) | |
| def get_supported_openai_params(self, model: str) -> List: | |
| return [ | |
| "stream", | |
| "temperature", | |
| "max_tokens", | |
| "logit_bias", | |
| "top_p", | |
| "frequency_penalty", | |
| "presence_penalty", | |
| "stop", | |
| "n", | |
| "extra_headers", | |
| ] | |
| def map_openai_params( | |
| self, | |
| non_default_params: dict, | |
| optional_params: dict, | |
| model: str, | |
| drop_params: bool, | |
| ) -> dict: | |
| for param, value in non_default_params.items(): | |
| if param == "stream": | |
| optional_params["stream"] = value | |
| elif param == "temperature": | |
| optional_params["temperature"] = value | |
| elif param == "max_tokens": | |
| optional_params["max_tokens"] = value | |
| elif param == "n": | |
| optional_params["num_generations"] = value | |
| elif param == "logit_bias": | |
| optional_params["logit_bias"] = value | |
| elif param == "top_p": | |
| optional_params["p"] = value | |
| elif param == "frequency_penalty": | |
| optional_params["frequency_penalty"] = value | |
| elif param == "presence_penalty": | |
| optional_params["presence_penalty"] = value | |
| elif param == "stop": | |
| optional_params["stop_sequences"] = value | |
| return optional_params | |
| def transform_request( | |
| self, | |
| model: str, | |
| messages: List[AllMessageValues], | |
| optional_params: dict, | |
| litellm_params: dict, | |
| headers: dict, | |
| ) -> dict: | |
| prompt = " ".join( | |
| convert_content_list_to_str(message=message) for message in messages | |
| ) | |
| ## Load Config | |
| config = litellm.CohereConfig.get_config() | |
| for k, v in config.items(): | |
| if ( | |
| k not in optional_params | |
| ): # completion(top_k=3) > cohere_config(top_k=3) <- allows for dynamic variables to be passed in | |
| optional_params[k] = v | |
| ## Handle Tool Calling | |
| if "tools" in optional_params: | |
| _is_function_call = True | |
| tool_calling_system_prompt = self._construct_cohere_tool_for_completion_api( | |
| tools=optional_params["tools"] | |
| ) | |
| optional_params["tools"] = tool_calling_system_prompt | |
| data = { | |
| "model": model, | |
| "prompt": prompt, | |
| **optional_params, | |
| } | |
| return data | |
| def transform_response( | |
| self, | |
| model: str, | |
| raw_response: httpx.Response, | |
| model_response: ModelResponse, | |
| logging_obj: LiteLLMLoggingObj, | |
| request_data: dict, | |
| messages: List[AllMessageValues], | |
| optional_params: dict, | |
| litellm_params: dict, | |
| encoding: Any, | |
| api_key: Optional[str] = None, | |
| json_mode: Optional[bool] = None, | |
| ) -> ModelResponse: | |
| prompt = " ".join( | |
| convert_content_list_to_str(message=message) for message in messages | |
| ) | |
| completion_response = raw_response.json() | |
| choices_list = [] | |
| for idx, item in enumerate(completion_response["generations"]): | |
| if len(item["text"]) > 0: | |
| message_obj = Message(content=item["text"]) | |
| else: | |
| message_obj = Message(content=None) | |
| choice_obj = Choices( | |
| finish_reason=item["finish_reason"], | |
| index=idx + 1, | |
| message=message_obj, | |
| ) | |
| choices_list.append(choice_obj) | |
| model_response.choices = choices_list # type: ignore | |
| ## CALCULATING USAGE | |
| prompt_tokens = len(encoding.encode(prompt)) | |
| completion_tokens = len( | |
| encoding.encode(model_response["choices"][0]["message"].get("content", "")) | |
| ) | |
| model_response.created = int(time.time()) | |
| model_response.model = model | |
| usage = Usage( | |
| prompt_tokens=prompt_tokens, | |
| completion_tokens=completion_tokens, | |
| total_tokens=prompt_tokens + completion_tokens, | |
| ) | |
| setattr(model_response, "usage", usage) | |
| return model_response | |
| def _construct_cohere_tool_for_completion_api( | |
| self, | |
| tools: Optional[List] = None, | |
| ) -> dict: | |
| if tools is None: | |
| tools = [] | |
| return {"tools": tools} | |
| def get_model_response_iterator( | |
| self, | |
| streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse], | |
| sync_stream: bool, | |
| json_mode: Optional[bool] = False, | |
| ): | |
| return CohereModelResponseIterator( | |
| streaming_response=streaming_response, | |
| sync_stream=sync_stream, | |
| json_mode=json_mode, | |
| ) | |
