Spaces:
Sleeping
Sleeping
import time | |
from typing import TYPE_CHECKING, Any, AsyncIterator, Iterator, List, Optional, Union | |
import httpx | |
import litellm | |
from litellm.litellm_core_utils.prompt_templates.factory import cohere_messages_pt_v2 | |
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException | |
from litellm.types.llms.cohere import CohereV2ChatResponse | |
from litellm.types.llms.openai import AllMessageValues, ChatCompletionToolCallChunk | |
from litellm.types.utils import ModelResponse, Usage | |
from ..common_utils import CohereError | |
from ..common_utils import ModelResponseIterator as CohereModelResponseIterator | |
from ..common_utils import validate_environment as cohere_validate_environment | |
if TYPE_CHECKING: | |
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj | |
LiteLLMLoggingObj = _LiteLLMLoggingObj | |
else: | |
LiteLLMLoggingObj = Any | |
class CohereV2ChatConfig(BaseConfig): | |
""" | |
Configuration class for Cohere's API interface. | |
Args: | |
preamble (str, optional): When specified, the default Cohere preamble will be replaced with the provided one. | |
chat_history (List[Dict[str, str]], optional): A list of previous messages between the user and the model. | |
generation_id (str, optional): Unique identifier for the generated reply. | |
response_id (str, optional): Unique identifier for the response. | |
conversation_id (str, optional): An alternative to chat_history, creates or resumes a persisted conversation. | |
prompt_truncation (str, optional): Dictates how the prompt will be constructed. Options: 'AUTO', 'AUTO_PRESERVE_ORDER', 'OFF'. | |
connectors (List[Dict[str, str]], optional): List of connectors (e.g., web-search) to enrich the model's reply. | |
search_queries_only (bool, optional): When true, the response will only contain a list of generated search queries. | |
documents (List[Dict[str, str]], optional): A list of relevant documents that the model can cite. | |
temperature (float, optional): A non-negative float that tunes the degree of randomness in generation. | |
max_tokens (int, optional): The maximum number of tokens the model will generate as part of the response. | |
k (int, optional): Ensures only the top k most likely tokens are considered for generation at each step. | |
p (float, optional): Ensures that only the most likely tokens, with total probability mass of p, are considered for generation. | |
frequency_penalty (float, optional): Used to reduce repetitiveness of generated tokens. | |
presence_penalty (float, optional): Used to reduce repetitiveness of generated tokens. | |
tools (List[Dict[str, str]], optional): A list of available tools (functions) that the model may suggest invoking. | |
tool_results (List[Dict[str, Any]], optional): A list of results from invoking tools. | |
seed (int, optional): A seed to assist reproducibility of the model's response. | |
""" | |
preamble: Optional[str] = None | |
chat_history: Optional[list] = None | |
generation_id: Optional[str] = None | |
response_id: Optional[str] = None | |
conversation_id: Optional[str] = None | |
prompt_truncation: Optional[str] = None | |
connectors: Optional[list] = None | |
search_queries_only: Optional[bool] = None | |
documents: Optional[list] = None | |
temperature: Optional[int] = None | |
max_tokens: Optional[int] = None | |
k: Optional[int] = None | |
p: Optional[int] = None | |
frequency_penalty: Optional[int] = None | |
presence_penalty: Optional[int] = None | |
tools: Optional[list] = None | |
tool_results: Optional[list] = None | |
seed: Optional[int] = None | |
def __init__( | |
self, | |
preamble: Optional[str] = None, | |
chat_history: Optional[list] = None, | |
generation_id: Optional[str] = None, | |
response_id: Optional[str] = None, | |
conversation_id: Optional[str] = None, | |
prompt_truncation: Optional[str] = None, | |
connectors: Optional[list] = None, | |
search_queries_only: Optional[bool] = None, | |
documents: Optional[list] = None, | |
temperature: Optional[int] = None, | |
max_tokens: Optional[int] = None, | |
k: Optional[int] = None, | |
p: Optional[int] = None, | |
frequency_penalty: Optional[int] = None, | |
presence_penalty: Optional[int] = None, | |
tools: Optional[list] = None, | |
tool_results: Optional[list] = None, | |
seed: Optional[int] = None, | |
) -> None: | |
locals_ = locals() | |
for key, value in locals_.items(): | |
if key != "self" and value is not None: | |
setattr(self.__class__, key, value) | |
def validate_environment( | |
self, | |
headers: dict, | |
model: str, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
api_key: Optional[str] = None, | |
api_base: Optional[str] = None, | |
) -> dict: | |
return cohere_validate_environment( | |
headers=headers, | |
model=model, | |
messages=messages, | |
optional_params=optional_params, | |
api_key=api_key, | |
) | |
def get_supported_openai_params(self, model: str) -> List[str]: | |
return [ | |
"stream", | |
"temperature", | |
"max_tokens", | |
"top_p", | |
"frequency_penalty", | |
"presence_penalty", | |
"stop", | |
"n", | |
"tools", | |
"tool_choice", | |
"seed", | |
"extra_headers", | |
] | |
def map_openai_params( | |
self, | |
non_default_params: dict, | |
optional_params: dict, | |
model: str, | |
drop_params: bool, | |
) -> dict: | |
for param, value in non_default_params.items(): | |
if param == "stream": | |
optional_params["stream"] = value | |
if param == "temperature": | |
optional_params["temperature"] = value | |
if param == "max_tokens": | |
optional_params["max_tokens"] = value | |
if param == "n": | |
optional_params["num_generations"] = value | |
if param == "top_p": | |
optional_params["p"] = value | |
if param == "frequency_penalty": | |
optional_params["frequency_penalty"] = value | |
if param == "presence_penalty": | |
optional_params["presence_penalty"] = value | |
if param == "stop": | |
optional_params["stop_sequences"] = value | |
if param == "tools": | |
optional_params["tools"] = value | |
if param == "seed": | |
optional_params["seed"] = value | |
return optional_params | |
def transform_request( | |
self, | |
model: str, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
headers: dict, | |
) -> dict: | |
## Load Config | |
for k, v in litellm.CohereChatConfig.get_config().items(): | |
if ( | |
k not in optional_params | |
): # completion(top_k=3) > cohere_config(top_k=3) <- allows for dynamic variables to be passed in | |
optional_params[k] = v | |
most_recent_message, chat_history = cohere_messages_pt_v2( | |
messages=messages, model=model, llm_provider="cohere_chat" | |
) | |
## Handle Tool Calling | |
if "tools" in optional_params: | |
_is_function_call = True | |
cohere_tools = self._construct_cohere_tool(tools=optional_params["tools"]) | |
optional_params["tools"] = cohere_tools | |
if isinstance(most_recent_message, dict): | |
optional_params["tool_results"] = [most_recent_message] | |
elif isinstance(most_recent_message, str): | |
optional_params["message"] = most_recent_message | |
## check if chat history message is 'user' and 'tool_results' is given -> force_single_step=True, else cohere api fails | |
if len(chat_history) > 0 and chat_history[-1]["role"] == "USER": | |
optional_params["force_single_step"] = True | |
return optional_params | |
def transform_response( | |
self, | |
model: str, | |
raw_response: httpx.Response, | |
model_response: ModelResponse, | |
logging_obj: LiteLLMLoggingObj, | |
request_data: dict, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
encoding: Any, | |
api_key: Optional[str] = None, | |
json_mode: Optional[bool] = None, | |
) -> ModelResponse: | |
try: | |
raw_response_json = raw_response.json() | |
except Exception: | |
raise CohereError( | |
message=raw_response.text, status_code=raw_response.status_code | |
) | |
try: | |
cohere_v2_chat_response = CohereV2ChatResponse(**raw_response_json) # type: ignore | |
except Exception: | |
raise CohereError(message=raw_response.text, status_code=422) | |
cohere_content = cohere_v2_chat_response["message"].get("content", None) | |
if cohere_content is not None: | |
model_response.choices[0].message.content = "".join( # type: ignore | |
[ | |
content.get("text", "") | |
for content in cohere_content | |
if content is not None | |
] | |
) | |
## ADD CITATIONS | |
if "citations" in cohere_v2_chat_response: | |
setattr(model_response, "citations", cohere_v2_chat_response["citations"]) | |
## Tool calling response | |
cohere_tools_response = cohere_v2_chat_response["message"].get("tool_calls", []) | |
if cohere_tools_response is not None and cohere_tools_response != []: | |
# convert cohere_tools_response to OpenAI response format | |
tool_calls: List[ChatCompletionToolCallChunk] = [] | |
for index, tool in enumerate(cohere_tools_response): | |
tool_call: ChatCompletionToolCallChunk = { | |
**tool, # type: ignore | |
"index": index, | |
} | |
tool_calls.append(tool_call) | |
_message = litellm.Message( | |
tool_calls=tool_calls, | |
content=None, | |
) | |
model_response.choices[0].message = _message # type: ignore | |
## CALCULATING USAGE - use cohere `billed_units` for returning usage | |
token_usage = cohere_v2_chat_response["usage"].get("tokens", {}) | |
prompt_tokens = token_usage.get("input_tokens", 0) | |
completion_tokens = token_usage.get("output_tokens", 0) | |
model_response.created = int(time.time()) | |
model_response.model = model | |
usage = Usage( | |
prompt_tokens=prompt_tokens, | |
completion_tokens=completion_tokens, | |
total_tokens=prompt_tokens + completion_tokens, | |
) | |
setattr(model_response, "usage", usage) | |
return model_response | |
def _construct_cohere_tool( | |
self, | |
tools: Optional[list] = None, | |
): | |
if tools is None: | |
tools = [] | |
cohere_tools = [] | |
for tool in tools: | |
cohere_tool = self._translate_openai_tool_to_cohere(tool) | |
cohere_tools.append(cohere_tool) | |
return cohere_tools | |
def _translate_openai_tool_to_cohere( | |
self, | |
openai_tool: dict, | |
): | |
# cohere tools look like this | |
""" | |
{ | |
"name": "query_daily_sales_report", | |
"description": "Connects to a database to retrieve overall sales volumes and sales information for a given day.", | |
"parameter_definitions": { | |
"day": { | |
"description": "Retrieves sales data for this day, formatted as YYYY-MM-DD.", | |
"type": "str", | |
"required": True | |
} | |
} | |
} | |
""" | |
# OpenAI tools look like this | |
""" | |
{ | |
"type": "function", | |
"function": { | |
"name": "get_current_weather", | |
"description": "Get the current weather in a given location", | |
"parameters": { | |
"type": "object", | |
"properties": { | |
"location": { | |
"type": "string", | |
"description": "The city and state, e.g. San Francisco, CA", | |
}, | |
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, | |
}, | |
"required": ["location"], | |
}, | |
}, | |
} | |
""" | |
cohere_tool = { | |
"name": openai_tool["function"]["name"], | |
"description": openai_tool["function"]["description"], | |
"parameter_definitions": {}, | |
} | |
for param_name, param_def in openai_tool["function"]["parameters"][ | |
"properties" | |
].items(): | |
required_params = ( | |
openai_tool.get("function", {}) | |
.get("parameters", {}) | |
.get("required", []) | |
) | |
cohere_param_def = { | |
"description": param_def.get("description", ""), | |
"type": param_def.get("type", ""), | |
"required": param_name in required_params, | |
} | |
cohere_tool["parameter_definitions"][param_name] = cohere_param_def | |
return cohere_tool | |
def get_model_response_iterator( | |
self, | |
streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse], | |
sync_stream: bool, | |
json_mode: Optional[bool] = False, | |
): | |
return CohereModelResponseIterator( | |
streaming_response=streaming_response, | |
sync_stream=sync_stream, | |
json_mode=json_mode, | |
) | |
def get_error_class( | |
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers] | |
) -> BaseLLMException: | |
return CohereError(status_code=status_code, message=error_message) | |