Spaces:
Sleeping
Sleeping
import json | |
import time | |
from typing import AsyncIterator, Iterator, List, Optional, Union | |
import httpx | |
import litellm | |
from litellm.llms.base_llm.base_model_iterator import BaseModelResponseIterator | |
from litellm.llms.base_llm.chat.transformation import ( | |
BaseConfig, | |
BaseLLMException, | |
LiteLLMLoggingObj, | |
) | |
from litellm.secret_managers.main import get_secret_str | |
from litellm.types.llms.openai import AllMessageValues | |
from litellm.types.utils import ( | |
ChatCompletionToolCallChunk, | |
ChatCompletionUsageBlock, | |
GenericStreamingChunk, | |
ModelResponse, | |
Usage, | |
) | |
class CloudflareError(BaseLLMException): | |
def __init__(self, status_code, message): | |
self.status_code = status_code | |
self.message = message | |
self.request = httpx.Request(method="POST", url="https://api.cloudflare.com") | |
self.response = httpx.Response(status_code=status_code, request=self.request) | |
super().__init__( | |
status_code=status_code, | |
message=message, | |
request=self.request, | |
response=self.response, | |
) # Call the base class constructor with the parameters it needs | |
class CloudflareChatConfig(BaseConfig): | |
max_tokens: Optional[int] = None | |
stream: Optional[bool] = None | |
def __init__( | |
self, | |
max_tokens: Optional[int] = None, | |
stream: Optional[bool] = None, | |
) -> None: | |
locals_ = locals().copy() | |
for key, value in locals_.items(): | |
if key != "self" and value is not None: | |
setattr(self.__class__, key, value) | |
def get_config(cls): | |
return super().get_config() | |
def validate_environment( | |
self, | |
headers: dict, | |
model: str, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
api_key: Optional[str] = None, | |
api_base: Optional[str] = None, | |
) -> dict: | |
if api_key is None: | |
raise ValueError( | |
"Missing CloudflareError API Key - A call is being made to cloudflare but no key is set either in the environment variables or via params" | |
) | |
headers = { | |
"accept": "application/json", | |
"content-type": "apbplication/json", | |
"Authorization": "Bearer " + api_key, | |
} | |
return headers | |
def get_complete_url( | |
self, | |
api_base: Optional[str], | |
api_key: Optional[str], | |
model: str, | |
optional_params: dict, | |
litellm_params: dict, | |
stream: Optional[bool] = None, | |
) -> str: | |
if api_base is None: | |
account_id = get_secret_str("CLOUDFLARE_ACCOUNT_ID") | |
api_base = ( | |
f"https://api.cloudflare.com/client/v4/accounts/{account_id}/ai/run/" | |
) | |
return api_base + model | |
def get_supported_openai_params(self, model: str) -> List[str]: | |
return [ | |
"stream", | |
"max_tokens", | |
] | |
def map_openai_params( | |
self, | |
non_default_params: dict, | |
optional_params: dict, | |
model: str, | |
drop_params: bool, | |
) -> dict: | |
supported_openai_params = self.get_supported_openai_params(model=model) | |
for param, value in non_default_params.items(): | |
if param == "max_completion_tokens": | |
optional_params["max_tokens"] = value | |
elif param in supported_openai_params: | |
optional_params[param] = value | |
return optional_params | |
def transform_request( | |
self, | |
model: str, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
headers: dict, | |
) -> dict: | |
config = litellm.CloudflareChatConfig.get_config() | |
for k, v in config.items(): | |
if k not in optional_params: | |
optional_params[k] = v | |
data = { | |
"messages": messages, | |
**optional_params, | |
} | |
return data | |
def transform_response( | |
self, | |
model: str, | |
raw_response: httpx.Response, | |
model_response: ModelResponse, | |
logging_obj: LiteLLMLoggingObj, | |
request_data: dict, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
encoding: str, | |
api_key: Optional[str] = None, | |
json_mode: Optional[bool] = None, | |
) -> ModelResponse: | |
completion_response = raw_response.json() | |
model_response.choices[0].message.content = completion_response["result"][ # type: ignore | |
"response" | |
] | |
prompt_tokens = litellm.utils.get_token_count(messages=messages, model=model) | |
completion_tokens = len( | |
encoding.encode(model_response["choices"][0]["message"].get("content", "")) | |
) | |
model_response.created = int(time.time()) | |
model_response.model = "cloudflare/" + model | |
usage = Usage( | |
prompt_tokens=prompt_tokens, | |
completion_tokens=completion_tokens, | |
total_tokens=prompt_tokens + completion_tokens, | |
) | |
setattr(model_response, "usage", usage) | |
return model_response | |
def get_error_class( | |
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers] | |
) -> BaseLLMException: | |
return CloudflareError( | |
status_code=status_code, | |
message=error_message, | |
) | |
def get_model_response_iterator( | |
self, | |
streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse], | |
sync_stream: bool, | |
json_mode: Optional[bool] = False, | |
): | |
return CloudflareChatResponseIterator( | |
streaming_response=streaming_response, | |
sync_stream=sync_stream, | |
json_mode=json_mode, | |
) | |
class CloudflareChatResponseIterator(BaseModelResponseIterator): | |
def chunk_parser(self, chunk: dict) -> GenericStreamingChunk: | |
try: | |
text = "" | |
tool_use: Optional[ChatCompletionToolCallChunk] = None | |
is_finished = False | |
finish_reason = "" | |
usage: Optional[ChatCompletionUsageBlock] = None | |
provider_specific_fields = None | |
index = int(chunk.get("index", 0)) | |
if "response" in chunk: | |
text = chunk["response"] | |
returned_chunk = GenericStreamingChunk( | |
text=text, | |
tool_use=tool_use, | |
is_finished=is_finished, | |
finish_reason=finish_reason, | |
usage=usage, | |
index=index, | |
provider_specific_fields=provider_specific_fields, | |
) | |
return returned_chunk | |
except json.JSONDecodeError: | |
raise ValueError(f"Failed to decode JSON from chunk: {chunk}") | |