Spaces:
Sleeping
Sleeping
import json | |
from typing import TYPE_CHECKING, Any, AsyncIterator, Iterator, List, Optional, Union | |
import httpx | |
from litellm.litellm_core_utils.prompt_templates.common_utils import ( | |
convert_content_list_to_str, | |
) | |
from litellm.llms.base_llm.base_model_iterator import FakeStreamResponseIterator | |
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException | |
from litellm.types.llms.openai import AllMessageValues | |
from litellm.types.utils import ( | |
ChatCompletionToolCallChunk, | |
ChatCompletionUsageBlock, | |
Choices, | |
GenericStreamingChunk, | |
Message, | |
ModelResponse, | |
Usage, | |
) | |
from litellm.utils import token_counter | |
from ..common_utils import ClarifaiError | |
if TYPE_CHECKING: | |
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj | |
LoggingClass = LiteLLMLoggingObj | |
else: | |
LoggingClass = Any | |
class ClarifaiConfig(BaseConfig): | |
""" | |
Reference: https://clarifai.com/meta/Llama-2/models/llama2-70b-chat | |
""" | |
max_tokens: Optional[int] = None | |
temperature: Optional[int] = None | |
top_k: Optional[int] = None | |
def __init__( | |
self, | |
max_tokens: Optional[int] = None, | |
temperature: Optional[int] = None, | |
top_k: Optional[int] = None, | |
) -> None: | |
locals_ = locals().copy() | |
for key, value in locals_.items(): | |
if key != "self" and value is not None: | |
setattr(self.__class__, key, value) | |
def get_config(cls): | |
return super().get_config() | |
def get_supported_openai_params(self, model: str) -> list: | |
return [ | |
"temperature", | |
"max_tokens", | |
] | |
def map_openai_params( | |
self, | |
non_default_params: dict, | |
optional_params: dict, | |
model: str, | |
drop_params: bool, | |
) -> dict: | |
for param, value in non_default_params.items(): | |
if param == "temperature": | |
optional_params["temperature"] = value | |
elif param == "max_tokens": | |
optional_params["max_tokens"] = value | |
return optional_params | |
def _completions_to_model(self, prompt: str, optional_params: dict) -> dict: | |
params = {} | |
if temperature := optional_params.get("temperature"): | |
params["temperature"] = temperature | |
if max_tokens := optional_params.get("max_tokens"): | |
params["max_tokens"] = max_tokens | |
return { | |
"inputs": [{"data": {"text": {"raw": prompt}}}], | |
"model": {"output_info": {"params": params}}, | |
} | |
def _convert_model_to_url(self, model: str, api_base: str): | |
user_id, app_id, model_id = model.split(".") | |
return f"{api_base}/users/{user_id}/apps/{app_id}/models/{model_id}/outputs" | |
def transform_request( | |
self, | |
model: str, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
headers: dict, | |
) -> dict: | |
prompt = " ".join(convert_content_list_to_str(message) for message in messages) | |
## Load Config | |
config = self.get_config() | |
for k, v in config.items(): | |
if k not in optional_params: | |
optional_params[k] = v | |
data = self._completions_to_model( | |
prompt=prompt, optional_params=optional_params | |
) | |
return data | |
def validate_environment( | |
self, | |
headers: dict, | |
model: str, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
api_key: Optional[str] = None, | |
api_base: Optional[str] = None, | |
) -> dict: | |
headers = { | |
"accept": "application/json", | |
"content-type": "application/json", | |
} | |
if api_key: | |
headers["Authorization"] = f"Bearer {api_key}" | |
return headers | |
def get_error_class( | |
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers] | |
) -> BaseLLMException: | |
return ClarifaiError(message=error_message, status_code=status_code) | |
def transform_response( | |
self, | |
model: str, | |
raw_response: httpx.Response, | |
model_response: ModelResponse, | |
logging_obj: LoggingClass, | |
request_data: dict, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
encoding: str, | |
api_key: Optional[str] = None, | |
json_mode: Optional[bool] = None, | |
) -> ModelResponse: | |
logging_obj.post_call( | |
input=messages, | |
api_key=api_key, | |
original_response=raw_response.text, | |
additional_args={"complete_input_dict": request_data}, | |
) | |
## RESPONSE OBJECT | |
try: | |
completion_response = raw_response.json() | |
except httpx.HTTPStatusError as e: | |
raise ClarifaiError( | |
message=str(e), | |
status_code=raw_response.status_code, | |
) | |
except Exception as e: | |
raise ClarifaiError( | |
message=str(e), | |
status_code=422, | |
) | |
# print(completion_response) | |
try: | |
choices_list = [] | |
for idx, item in enumerate(completion_response["outputs"]): | |
if len(item["data"]["text"]["raw"]) > 0: | |
message_obj = Message(content=item["data"]["text"]["raw"]) | |
else: | |
message_obj = Message(content=None) | |
choice_obj = Choices( | |
finish_reason="stop", | |
index=idx + 1, # check | |
message=message_obj, | |
) | |
choices_list.append(choice_obj) | |
model_response.choices = choices_list # type: ignore | |
except Exception as e: | |
raise ClarifaiError( | |
message=str(e), | |
status_code=422, | |
) | |
# Calculate Usage | |
prompt_tokens = token_counter(model=model, messages=messages) | |
completion_tokens = len( | |
encoding.encode(model_response["choices"][0]["message"].get("content")) | |
) | |
model_response.model = model | |
setattr( | |
model_response, | |
"usage", | |
Usage( | |
prompt_tokens=prompt_tokens, | |
completion_tokens=completion_tokens, | |
total_tokens=prompt_tokens + completion_tokens, | |
), | |
) | |
return model_response | |
def get_model_response_iterator( | |
self, | |
streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse], | |
sync_stream: bool, | |
json_mode: Optional[bool] = False, | |
) -> Any: | |
return ClarifaiModelResponseIterator( | |
model_response=streaming_response, | |
json_mode=json_mode, | |
) | |
class ClarifaiModelResponseIterator(FakeStreamResponseIterator): | |
def __init__( | |
self, | |
model_response: Union[Iterator[str], AsyncIterator[str], ModelResponse], | |
json_mode: Optional[bool] = False, | |
): | |
super().__init__( | |
model_response=model_response, | |
json_mode=json_mode, | |
) | |
def chunk_parser(self, chunk: dict) -> GenericStreamingChunk: | |
try: | |
text = "" | |
tool_use: Optional[ChatCompletionToolCallChunk] = None | |
is_finished = False | |
finish_reason = "" | |
usage: Optional[ChatCompletionUsageBlock] = None | |
provider_specific_fields = None | |
text = ( | |
chunk.get("outputs", "")[0] | |
.get("data", "") | |
.get("text", "") | |
.get("raw", "") | |
) | |
index: int = 0 | |
return GenericStreamingChunk( | |
text=text, | |
tool_use=tool_use, | |
is_finished=is_finished, | |
finish_reason=finish_reason, | |
usage=usage, | |
index=index, | |
provider_specific_fields=provider_specific_fields, | |
) | |
except json.JSONDecodeError: | |
raise ValueError(f"Failed to decode JSON from chunk: {chunk}") | |