Spaces:
Sleeping
Sleeping
import types | |
from typing import List, Optional | |
from openai.types.image import Image | |
from litellm.types.utils import ImageResponse | |
class AmazonStabilityConfig: | |
""" | |
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=stability.stable-diffusion-xl-v0 | |
Supported Params for the Amazon / Stable Diffusion models: | |
- `cfg_scale` (integer): Default `7`. Between [ 0 .. 35 ]. How strictly the diffusion process adheres to the prompt text (higher values keep your image closer to your prompt) | |
- `seed` (float): Default: `0`. Between [ 0 .. 4294967295 ]. Random noise seed (omit this option or use 0 for a random seed) | |
- `steps` (array of strings): Default `30`. Between [ 10 .. 50 ]. Number of diffusion steps to run. | |
- `width` (integer): Default: `512`. multiple of 64 >= 128. Width of the image to generate, in pixels, in an increment divible by 64. | |
Engine-specific dimension validation: | |
- SDXL Beta: must be between 128x128 and 512x896 (or 896x512); only one dimension can be greater than 512. | |
- SDXL v0.9: must be one of 1024x1024, 1152x896, 1216x832, 1344x768, 1536x640, 640x1536, 768x1344, 832x1216, or 896x1152 | |
- SDXL v1.0: same as SDXL v0.9 | |
- SD v1.6: must be between 320x320 and 1536x1536 | |
- `height` (integer): Default: `512`. multiple of 64 >= 128. Height of the image to generate, in pixels, in an increment divible by 64. | |
Engine-specific dimension validation: | |
- SDXL Beta: must be between 128x128 and 512x896 (or 896x512); only one dimension can be greater than 512. | |
- SDXL v0.9: must be one of 1024x1024, 1152x896, 1216x832, 1344x768, 1536x640, 640x1536, 768x1344, 832x1216, or 896x1152 | |
- SDXL v1.0: same as SDXL v0.9 | |
- SD v1.6: must be between 320x320 and 1536x1536 | |
""" | |
cfg_scale: Optional[int] = None | |
seed: Optional[float] = None | |
steps: Optional[List[str]] = None | |
width: Optional[int] = None | |
height: Optional[int] = None | |
def __init__( | |
self, | |
cfg_scale: Optional[int] = None, | |
seed: Optional[float] = None, | |
steps: Optional[List[str]] = None, | |
width: Optional[int] = None, | |
height: Optional[int] = None, | |
) -> None: | |
locals_ = locals().copy() | |
for key, value in locals_.items(): | |
if key != "self" and value is not None: | |
setattr(self.__class__, key, value) | |
def get_config(cls): | |
return { | |
k: v | |
for k, v in cls.__dict__.items() | |
if not k.startswith("__") | |
and not isinstance( | |
v, | |
( | |
types.FunctionType, | |
types.BuiltinFunctionType, | |
classmethod, | |
staticmethod, | |
), | |
) | |
and v is not None | |
} | |
def get_supported_openai_params(cls, model: Optional[str] = None) -> List: | |
return ["size"] | |
def map_openai_params( | |
cls, | |
non_default_params: dict, | |
optional_params: dict, | |
): | |
_size = non_default_params.get("size") | |
if _size is not None: | |
width, height = _size.split("x") | |
optional_params["width"] = int(width) | |
optional_params["height"] = int(height) | |
return optional_params | |
def transform_response_dict_to_openai_response( | |
cls, model_response: ImageResponse, response_dict: dict | |
) -> ImageResponse: | |
image_list: List[Image] = [] | |
for artifact in response_dict["artifacts"]: | |
_image = Image(b64_json=artifact["base64"]) | |
image_list.append(_image) | |
model_response.data = image_list | |
return model_response | |