Spaces:
Sleeping
Sleeping
""" | |
Transformation logic from OpenAI /v1/embeddings format to Bedrock Amazon Titan G1 /invoke format. | |
Why separate file? Make it easy to see how transformation works | |
Convers | |
- G1 request format | |
Docs - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-text.html | |
""" | |
import types | |
from typing import List | |
from litellm.types.llms.bedrock import ( | |
AmazonTitanG1EmbeddingRequest, | |
AmazonTitanG1EmbeddingResponse, | |
) | |
from litellm.types.utils import Embedding, EmbeddingResponse, Usage | |
class AmazonTitanG1Config: | |
""" | |
Reference: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-text.html | |
""" | |
def __init__( | |
self, | |
) -> None: | |
locals_ = locals().copy() | |
for key, value in locals_.items(): | |
if key != "self" and value is not None: | |
setattr(self.__class__, key, value) | |
def get_config(cls): | |
return { | |
k: v | |
for k, v in cls.__dict__.items() | |
if not k.startswith("__") | |
and not isinstance( | |
v, | |
( | |
types.FunctionType, | |
types.BuiltinFunctionType, | |
classmethod, | |
staticmethod, | |
), | |
) | |
and v is not None | |
} | |
def get_supported_openai_params(self) -> List[str]: | |
return [] | |
def map_openai_params( | |
self, non_default_params: dict, optional_params: dict | |
) -> dict: | |
return optional_params | |
def _transform_request( | |
self, input: str, inference_params: dict | |
) -> AmazonTitanG1EmbeddingRequest: | |
return AmazonTitanG1EmbeddingRequest(inputText=input) | |
def _transform_response( | |
self, response_list: List[dict], model: str | |
) -> EmbeddingResponse: | |
total_prompt_tokens = 0 | |
transformed_responses: List[Embedding] = [] | |
for index, response in enumerate(response_list): | |
_parsed_response = AmazonTitanG1EmbeddingResponse(**response) # type: ignore | |
transformed_responses.append( | |
Embedding( | |
embedding=_parsed_response["embedding"], | |
index=index, | |
object="embedding", | |
) | |
) | |
total_prompt_tokens += _parsed_response["inputTextTokenCount"] | |
usage = Usage( | |
prompt_tokens=total_prompt_tokens, | |
completion_tokens=0, | |
total_tokens=total_prompt_tokens, | |
) | |
return EmbeddingResponse(model=model, usage=usage, data=transformed_responses) | |