Spaces:
Sleeping
Sleeping
from typing import Any, Callable, Optional | |
from openai import AsyncAzureOpenAI, AzureOpenAI | |
from litellm.litellm_core_utils.prompt_templates.factory import prompt_factory | |
from litellm.utils import CustomStreamWrapper, ModelResponse, TextCompletionResponse | |
from ...openai.completion.transformation import OpenAITextCompletionConfig | |
from ..common_utils import AzureOpenAIError, BaseAzureLLM | |
openai_text_completion_config = OpenAITextCompletionConfig() | |
class AzureTextCompletion(BaseAzureLLM): | |
def __init__(self) -> None: | |
super().__init__() | |
def validate_environment(self, api_key, azure_ad_token): | |
headers = { | |
"content-type": "application/json", | |
} | |
if api_key is not None: | |
headers["api-key"] = api_key | |
elif azure_ad_token is not None: | |
headers["Authorization"] = f"Bearer {azure_ad_token}" | |
return headers | |
def completion( # noqa: PLR0915 | |
self, | |
model: str, | |
messages: list, | |
model_response: ModelResponse, | |
api_key: str, | |
api_base: str, | |
api_version: str, | |
api_type: str, | |
azure_ad_token: str, | |
azure_ad_token_provider: Optional[Callable], | |
print_verbose: Callable, | |
timeout, | |
logging_obj, | |
optional_params, | |
litellm_params, | |
logger_fn, | |
acompletion: bool = False, | |
headers: Optional[dict] = None, | |
client=None, | |
): | |
try: | |
if model is None or messages is None: | |
raise AzureOpenAIError( | |
status_code=422, message="Missing model or messages" | |
) | |
max_retries = optional_params.pop("max_retries", 2) | |
prompt = prompt_factory( | |
messages=messages, model=model, custom_llm_provider="azure_text" | |
) | |
### CHECK IF CLOUDFLARE AI GATEWAY ### | |
### if so - set the model as part of the base url | |
if "gateway.ai.cloudflare.com" in api_base: | |
## build base url - assume api base includes resource name | |
client = self._init_azure_client_for_cloudflare_ai_gateway( | |
api_key=api_key, | |
api_version=api_version, | |
api_base=api_base, | |
model=model, | |
client=client, | |
max_retries=max_retries, | |
timeout=timeout, | |
azure_ad_token=azure_ad_token, | |
azure_ad_token_provider=azure_ad_token_provider, | |
acompletion=acompletion, | |
litellm_params=litellm_params, | |
) | |
data = {"model": None, "prompt": prompt, **optional_params} | |
else: | |
data = { | |
"model": model, # type: ignore | |
"prompt": prompt, | |
**optional_params, | |
} | |
if acompletion is True: | |
if optional_params.get("stream", False): | |
return self.async_streaming( | |
logging_obj=logging_obj, | |
api_base=api_base, | |
data=data, | |
model=model, | |
api_key=api_key, | |
api_version=api_version, | |
azure_ad_token=azure_ad_token, | |
timeout=timeout, | |
client=client, | |
litellm_params=litellm_params, | |
) | |
else: | |
return self.acompletion( | |
api_base=api_base, | |
data=data, | |
model_response=model_response, | |
api_key=api_key, | |
api_version=api_version, | |
model=model, | |
azure_ad_token=azure_ad_token, | |
timeout=timeout, | |
client=client, | |
logging_obj=logging_obj, | |
max_retries=max_retries, | |
litellm_params=litellm_params, | |
) | |
elif "stream" in optional_params and optional_params["stream"] is True: | |
return self.streaming( | |
logging_obj=logging_obj, | |
api_base=api_base, | |
data=data, | |
model=model, | |
api_key=api_key, | |
api_version=api_version, | |
azure_ad_token=azure_ad_token, | |
timeout=timeout, | |
client=client, | |
) | |
else: | |
## LOGGING | |
logging_obj.pre_call( | |
input=prompt, | |
api_key=api_key, | |
additional_args={ | |
"headers": { | |
"api_key": api_key, | |
"azure_ad_token": azure_ad_token, | |
}, | |
"api_version": api_version, | |
"api_base": api_base, | |
"complete_input_dict": data, | |
}, | |
) | |
if not isinstance(max_retries, int): | |
raise AzureOpenAIError( | |
status_code=422, message="max retries must be an int" | |
) | |
# init AzureOpenAI Client | |
azure_client = self.get_azure_openai_client( | |
api_key=api_key, | |
api_base=api_base, | |
api_version=api_version, | |
client=client, | |
litellm_params=litellm_params, | |
_is_async=False, | |
model=model, | |
) | |
if not isinstance(azure_client, AzureOpenAI): | |
raise AzureOpenAIError( | |
status_code=500, | |
message="azure_client is not an instance of AzureOpenAI", | |
) | |
raw_response = azure_client.completions.with_raw_response.create( | |
**data, timeout=timeout | |
) | |
response = raw_response.parse() | |
stringified_response = response.model_dump() | |
## LOGGING | |
logging_obj.post_call( | |
input=prompt, | |
api_key=api_key, | |
original_response=stringified_response, | |
additional_args={ | |
"headers": headers, | |
"api_version": api_version, | |
"api_base": api_base, | |
}, | |
) | |
return ( | |
openai_text_completion_config.convert_to_chat_model_response_object( | |
response_object=TextCompletionResponse(**stringified_response), | |
model_response_object=model_response, | |
) | |
) | |
except AzureOpenAIError as e: | |
raise e | |
except Exception as e: | |
status_code = getattr(e, "status_code", 500) | |
error_headers = getattr(e, "headers", None) | |
error_response = getattr(e, "response", None) | |
if error_headers is None and error_response: | |
error_headers = getattr(error_response, "headers", None) | |
raise AzureOpenAIError( | |
status_code=status_code, message=str(e), headers=error_headers | |
) | |
async def acompletion( | |
self, | |
api_key: str, | |
api_version: str, | |
model: str, | |
api_base: str, | |
data: dict, | |
timeout: Any, | |
model_response: ModelResponse, | |
logging_obj: Any, | |
max_retries: int, | |
azure_ad_token: Optional[str] = None, | |
client=None, # this is the AsyncAzureOpenAI | |
litellm_params: dict = {}, | |
): | |
response = None | |
try: | |
# init AzureOpenAI Client | |
# setting Azure client | |
azure_client = self.get_azure_openai_client( | |
api_version=api_version, | |
api_base=api_base, | |
api_key=api_key, | |
model=model, | |
_is_async=True, | |
client=client, | |
litellm_params=litellm_params, | |
) | |
if not isinstance(azure_client, AsyncAzureOpenAI): | |
raise AzureOpenAIError( | |
status_code=500, | |
message="azure_client is not an instance of AsyncAzureOpenAI", | |
) | |
## LOGGING | |
logging_obj.pre_call( | |
input=data["prompt"], | |
api_key=azure_client.api_key, | |
additional_args={ | |
"headers": {"Authorization": f"Bearer {azure_client.api_key}"}, | |
"api_base": azure_client._base_url._uri_reference, | |
"acompletion": True, | |
"complete_input_dict": data, | |
}, | |
) | |
raw_response = await azure_client.completions.with_raw_response.create( | |
**data, timeout=timeout | |
) | |
response = raw_response.parse() | |
return openai_text_completion_config.convert_to_chat_model_response_object( | |
response_object=response.model_dump(), | |
model_response_object=model_response, | |
) | |
except AzureOpenAIError as e: | |
raise e | |
except Exception as e: | |
status_code = getattr(e, "status_code", 500) | |
error_headers = getattr(e, "headers", None) | |
error_response = getattr(e, "response", None) | |
if error_headers is None and error_response: | |
error_headers = getattr(error_response, "headers", None) | |
raise AzureOpenAIError( | |
status_code=status_code, message=str(e), headers=error_headers | |
) | |
def streaming( | |
self, | |
logging_obj, | |
api_base: str, | |
api_key: str, | |
api_version: str, | |
data: dict, | |
model: str, | |
timeout: Any, | |
azure_ad_token: Optional[str] = None, | |
client=None, | |
litellm_params: dict = {}, | |
): | |
max_retries = data.pop("max_retries", 2) | |
if not isinstance(max_retries, int): | |
raise AzureOpenAIError( | |
status_code=422, message="max retries must be an int" | |
) | |
# init AzureOpenAI Client | |
azure_client = self.get_azure_openai_client( | |
api_version=api_version, | |
api_base=api_base, | |
api_key=api_key, | |
model=model, | |
_is_async=False, | |
client=client, | |
litellm_params=litellm_params, | |
) | |
if not isinstance(azure_client, AzureOpenAI): | |
raise AzureOpenAIError( | |
status_code=500, | |
message="azure_client is not an instance of AzureOpenAI", | |
) | |
## LOGGING | |
logging_obj.pre_call( | |
input=data["prompt"], | |
api_key=azure_client.api_key, | |
additional_args={ | |
"headers": {"Authorization": f"Bearer {azure_client.api_key}"}, | |
"api_base": azure_client._base_url._uri_reference, | |
"acompletion": True, | |
"complete_input_dict": data, | |
}, | |
) | |
raw_response = azure_client.completions.with_raw_response.create( | |
**data, timeout=timeout | |
) | |
response = raw_response.parse() | |
streamwrapper = CustomStreamWrapper( | |
completion_stream=response, | |
model=model, | |
custom_llm_provider="azure_text", | |
logging_obj=logging_obj, | |
) | |
return streamwrapper | |
async def async_streaming( | |
self, | |
logging_obj, | |
api_base: str, | |
api_key: str, | |
api_version: str, | |
data: dict, | |
model: str, | |
timeout: Any, | |
azure_ad_token: Optional[str] = None, | |
client=None, | |
litellm_params: dict = {}, | |
): | |
try: | |
# init AzureOpenAI Client | |
azure_client = self.get_azure_openai_client( | |
api_version=api_version, | |
api_base=api_base, | |
api_key=api_key, | |
model=model, | |
_is_async=True, | |
client=client, | |
litellm_params=litellm_params, | |
) | |
if not isinstance(azure_client, AsyncAzureOpenAI): | |
raise AzureOpenAIError( | |
status_code=500, | |
message="azure_client is not an instance of AsyncAzureOpenAI", | |
) | |
## LOGGING | |
logging_obj.pre_call( | |
input=data["prompt"], | |
api_key=azure_client.api_key, | |
additional_args={ | |
"headers": {"Authorization": f"Bearer {azure_client.api_key}"}, | |
"api_base": azure_client._base_url._uri_reference, | |
"acompletion": True, | |
"complete_input_dict": data, | |
}, | |
) | |
raw_response = await azure_client.completions.with_raw_response.create( | |
**data, timeout=timeout | |
) | |
response = raw_response.parse() | |
# return response | |
streamwrapper = CustomStreamWrapper( | |
completion_stream=response, | |
model=model, | |
custom_llm_provider="azure_text", | |
logging_obj=logging_obj, | |
) | |
return streamwrapper ## DO NOT make this into an async for ... loop, it will yield an async generator, which won't raise errors if the response fails | |
except Exception as e: | |
status_code = getattr(e, "status_code", 500) | |
error_headers = getattr(e, "headers", None) | |
error_response = getattr(e, "response", None) | |
if error_headers is None and error_response: | |
error_headers = getattr(error_response, "headers", None) | |
raise AzureOpenAIError( | |
status_code=status_code, message=str(e), headers=error_headers | |
) | |