Spaces:
Sleeping
Sleeping
import asyncio | |
import json | |
import time | |
from typing import Any, Callable, Coroutine, Dict, List, Optional, Union | |
import httpx # type: ignore | |
from openai import APITimeoutError, AsyncAzureOpenAI, AzureOpenAI | |
import litellm | |
from litellm.constants import AZURE_OPERATION_POLLING_TIMEOUT, DEFAULT_MAX_RETRIES | |
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj | |
from litellm.litellm_core_utils.logging_utils import track_llm_api_timing | |
from litellm.llms.custom_httpx.http_handler import ( | |
AsyncHTTPHandler, | |
HTTPHandler, | |
get_async_httpx_client, | |
) | |
from litellm.types.utils import ( | |
EmbeddingResponse, | |
ImageResponse, | |
LlmProviders, | |
ModelResponse, | |
) | |
from litellm.utils import ( | |
CustomStreamWrapper, | |
convert_to_model_response_object, | |
modify_url, | |
) | |
from ...types.llms.openai import HttpxBinaryResponseContent | |
from ..base import BaseLLM | |
from .common_utils import ( | |
AzureOpenAIError, | |
BaseAzureLLM, | |
get_azure_ad_token_from_oidc, | |
process_azure_headers, | |
select_azure_base_url_or_endpoint, | |
) | |
class AzureOpenAIAssistantsAPIConfig: | |
""" | |
Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/assistants-reference-messages?tabs=python#create-message | |
""" | |
def __init__( | |
self, | |
) -> None: | |
pass | |
def get_supported_openai_create_message_params(self): | |
return [ | |
"role", | |
"content", | |
"attachments", | |
"metadata", | |
] | |
def map_openai_params_create_message_params( | |
self, non_default_params: dict, optional_params: dict | |
): | |
for param, value in non_default_params.items(): | |
if param == "role": | |
optional_params["role"] = value | |
if param == "metadata": | |
optional_params["metadata"] = value | |
elif param == "content": # only string accepted | |
if isinstance(value, str): | |
optional_params["content"] = value | |
else: | |
raise litellm.utils.UnsupportedParamsError( | |
message="Azure only accepts content as a string.", | |
status_code=400, | |
) | |
elif ( | |
param == "attachments" | |
): # this is a v2 param. Azure currently supports the old 'file_id's param | |
file_ids: List[str] = [] | |
if isinstance(value, list): | |
for item in value: | |
if "file_id" in item: | |
file_ids.append(item["file_id"]) | |
else: | |
if litellm.drop_params is True: | |
pass | |
else: | |
raise litellm.utils.UnsupportedParamsError( | |
message="Azure doesn't support {}. To drop it from the call, set `litellm.drop_params = True.".format( | |
value | |
), | |
status_code=400, | |
) | |
else: | |
raise litellm.utils.UnsupportedParamsError( | |
message="Invalid param. attachments should always be a list. Got={}, Expected=List. Raw value={}".format( | |
type(value), value | |
), | |
status_code=400, | |
) | |
return optional_params | |
def _check_dynamic_azure_params( | |
azure_client_params: dict, | |
azure_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]], | |
) -> bool: | |
""" | |
Returns True if user passed in client params != initialized azure client | |
Currently only implemented for api version | |
""" | |
if azure_client is None: | |
return True | |
dynamic_params = ["api_version"] | |
for k, v in azure_client_params.items(): | |
if k in dynamic_params and k == "api_version": | |
if v is not None and v != azure_client._custom_query["api-version"]: | |
return True | |
return False | |
class AzureChatCompletion(BaseAzureLLM, BaseLLM): | |
def __init__(self) -> None: | |
super().__init__() | |
def make_sync_azure_openai_chat_completion_request( | |
self, | |
azure_client: AzureOpenAI, | |
data: dict, | |
timeout: Union[float, httpx.Timeout], | |
): | |
""" | |
Helper to: | |
- call chat.completions.create.with_raw_response when litellm.return_response_headers is True | |
- call chat.completions.create by default | |
""" | |
try: | |
raw_response = azure_client.chat.completions.with_raw_response.create( | |
**data, timeout=timeout | |
) | |
headers = dict(raw_response.headers) | |
response = raw_response.parse() | |
return headers, response | |
except Exception as e: | |
raise e | |
async def make_azure_openai_chat_completion_request( | |
self, | |
azure_client: AsyncAzureOpenAI, | |
data: dict, | |
timeout: Union[float, httpx.Timeout], | |
logging_obj: LiteLLMLoggingObj, | |
): | |
""" | |
Helper to: | |
- call chat.completions.create.with_raw_response when litellm.return_response_headers is True | |
- call chat.completions.create by default | |
""" | |
start_time = time.time() | |
try: | |
raw_response = await azure_client.chat.completions.with_raw_response.create( | |
**data, timeout=timeout | |
) | |
headers = dict(raw_response.headers) | |
response = raw_response.parse() | |
return headers, response | |
except APITimeoutError as e: | |
end_time = time.time() | |
time_delta = round(end_time - start_time, 2) | |
e.message += f" - timeout value={timeout}, time taken={time_delta} seconds" | |
raise e | |
except Exception as e: | |
raise e | |
def completion( # noqa: PLR0915 | |
self, | |
model: str, | |
messages: list, | |
model_response: ModelResponse, | |
api_key: str, | |
api_base: str, | |
api_version: str, | |
api_type: str, | |
azure_ad_token: str, | |
azure_ad_token_provider: Callable, | |
dynamic_params: bool, | |
print_verbose: Callable, | |
timeout: Union[float, httpx.Timeout], | |
logging_obj: LiteLLMLoggingObj, | |
optional_params, | |
litellm_params, | |
logger_fn, | |
acompletion: bool = False, | |
headers: Optional[dict] = None, | |
client=None, | |
): | |
if headers: | |
optional_params["extra_headers"] = headers | |
try: | |
if model is None or messages is None: | |
raise AzureOpenAIError( | |
status_code=422, message="Missing model or messages" | |
) | |
max_retries = optional_params.pop("max_retries", None) | |
if max_retries is None: | |
max_retries = DEFAULT_MAX_RETRIES | |
json_mode: Optional[bool] = optional_params.pop("json_mode", False) | |
### CHECK IF CLOUDFLARE AI GATEWAY ### | |
### if so - set the model as part of the base url | |
if "gateway.ai.cloudflare.com" in api_base: | |
client = self._init_azure_client_for_cloudflare_ai_gateway( | |
api_base=api_base, | |
model=model, | |
api_version=api_version, | |
max_retries=max_retries, | |
timeout=timeout, | |
api_key=api_key, | |
azure_ad_token=azure_ad_token, | |
azure_ad_token_provider=azure_ad_token_provider, | |
acompletion=acompletion, | |
client=client, | |
litellm_params=litellm_params, | |
) | |
data = {"model": None, "messages": messages, **optional_params} | |
else: | |
data = litellm.AzureOpenAIConfig().transform_request( | |
model=model, | |
messages=messages, | |
optional_params=optional_params, | |
litellm_params=litellm_params, | |
headers=headers or {}, | |
) | |
if acompletion is True: | |
if optional_params.get("stream", False): | |
return self.async_streaming( | |
logging_obj=logging_obj, | |
api_base=api_base, | |
dynamic_params=dynamic_params, | |
data=data, | |
model=model, | |
api_key=api_key, | |
api_version=api_version, | |
azure_ad_token=azure_ad_token, | |
azure_ad_token_provider=azure_ad_token_provider, | |
timeout=timeout, | |
client=client, | |
max_retries=max_retries, | |
litellm_params=litellm_params, | |
) | |
else: | |
return self.acompletion( | |
api_base=api_base, | |
data=data, | |
model_response=model_response, | |
api_key=api_key, | |
api_version=api_version, | |
model=model, | |
azure_ad_token=azure_ad_token, | |
azure_ad_token_provider=azure_ad_token_provider, | |
dynamic_params=dynamic_params, | |
timeout=timeout, | |
client=client, | |
logging_obj=logging_obj, | |
max_retries=max_retries, | |
convert_tool_call_to_json_mode=json_mode, | |
litellm_params=litellm_params, | |
) | |
elif "stream" in optional_params and optional_params["stream"] is True: | |
return self.streaming( | |
logging_obj=logging_obj, | |
api_base=api_base, | |
dynamic_params=dynamic_params, | |
data=data, | |
model=model, | |
api_key=api_key, | |
api_version=api_version, | |
azure_ad_token=azure_ad_token, | |
azure_ad_token_provider=azure_ad_token_provider, | |
timeout=timeout, | |
client=client, | |
max_retries=max_retries, | |
litellm_params=litellm_params, | |
) | |
else: | |
## LOGGING | |
logging_obj.pre_call( | |
input=messages, | |
api_key=api_key, | |
additional_args={ | |
"headers": { | |
"api_key": api_key, | |
"azure_ad_token": azure_ad_token, | |
}, | |
"api_version": api_version, | |
"api_base": api_base, | |
"complete_input_dict": data, | |
}, | |
) | |
if not isinstance(max_retries, int): | |
raise AzureOpenAIError( | |
status_code=422, message="max retries must be an int" | |
) | |
# init AzureOpenAI Client | |
azure_client = self.get_azure_openai_client( | |
api_version=api_version, | |
api_base=api_base, | |
api_key=api_key, | |
model=model, | |
client=client, | |
_is_async=False, | |
litellm_params=litellm_params, | |
) | |
if not isinstance(azure_client, AzureOpenAI): | |
raise AzureOpenAIError( | |
status_code=500, | |
message="azure_client is not an instance of AzureOpenAI", | |
) | |
headers, response = self.make_sync_azure_openai_chat_completion_request( | |
azure_client=azure_client, data=data, timeout=timeout | |
) | |
stringified_response = response.model_dump() | |
## LOGGING | |
logging_obj.post_call( | |
input=messages, | |
api_key=api_key, | |
original_response=stringified_response, | |
additional_args={ | |
"headers": headers, | |
"api_version": api_version, | |
"api_base": api_base, | |
}, | |
) | |
return convert_to_model_response_object( | |
response_object=stringified_response, | |
model_response_object=model_response, | |
convert_tool_call_to_json_mode=json_mode, | |
_response_headers=headers, | |
) | |
except AzureOpenAIError as e: | |
raise e | |
except Exception as e: | |
status_code = getattr(e, "status_code", 500) | |
error_headers = getattr(e, "headers", None) | |
error_response = getattr(e, "response", None) | |
error_body = getattr(e, "body", None) | |
if error_headers is None and error_response: | |
error_headers = getattr(error_response, "headers", None) | |
raise AzureOpenAIError( | |
status_code=status_code, | |
message=str(e), | |
headers=error_headers, | |
body=error_body, | |
) | |
async def acompletion( | |
self, | |
api_key: str, | |
api_version: str, | |
model: str, | |
api_base: str, | |
data: dict, | |
timeout: Any, | |
dynamic_params: bool, | |
model_response: ModelResponse, | |
logging_obj: LiteLLMLoggingObj, | |
max_retries: int, | |
azure_ad_token: Optional[str] = None, | |
azure_ad_token_provider: Optional[Callable] = None, | |
convert_tool_call_to_json_mode: Optional[bool] = None, | |
client=None, # this is the AsyncAzureOpenAI | |
litellm_params: Optional[dict] = {}, | |
): | |
response = None | |
try: | |
# setting Azure client | |
azure_client = self.get_azure_openai_client( | |
api_version=api_version, | |
api_base=api_base, | |
api_key=api_key, | |
model=model, | |
client=client, | |
_is_async=True, | |
litellm_params=litellm_params, | |
) | |
if not isinstance(azure_client, AsyncAzureOpenAI): | |
raise ValueError("Azure client is not an instance of AsyncAzureOpenAI") | |
## LOGGING | |
logging_obj.pre_call( | |
input=data["messages"], | |
api_key=azure_client.api_key, | |
additional_args={ | |
"headers": { | |
"api_key": api_key, | |
"azure_ad_token": azure_ad_token, | |
}, | |
"api_base": azure_client._base_url._uri_reference, | |
"acompletion": True, | |
"complete_input_dict": data, | |
}, | |
) | |
headers, response = await self.make_azure_openai_chat_completion_request( | |
azure_client=azure_client, | |
data=data, | |
timeout=timeout, | |
logging_obj=logging_obj, | |
) | |
logging_obj.model_call_details["response_headers"] = headers | |
stringified_response = response.model_dump() | |
logging_obj.post_call( | |
input=data["messages"], | |
api_key=api_key, | |
original_response=stringified_response, | |
additional_args={"complete_input_dict": data}, | |
) | |
return convert_to_model_response_object( | |
response_object=stringified_response, | |
model_response_object=model_response, | |
hidden_params={"headers": headers}, | |
_response_headers=headers, | |
convert_tool_call_to_json_mode=convert_tool_call_to_json_mode, | |
) | |
except AzureOpenAIError as e: | |
## LOGGING | |
logging_obj.post_call( | |
input=data["messages"], | |
api_key=api_key, | |
additional_args={"complete_input_dict": data}, | |
original_response=str(e), | |
) | |
raise e | |
except asyncio.CancelledError as e: | |
## LOGGING | |
logging_obj.post_call( | |
input=data["messages"], | |
api_key=api_key, | |
additional_args={"complete_input_dict": data}, | |
original_response=str(e), | |
) | |
raise AzureOpenAIError(status_code=500, message=str(e)) | |
except Exception as e: | |
message = getattr(e, "message", str(e)) | |
body = getattr(e, "body", None) | |
## LOGGING | |
logging_obj.post_call( | |
input=data["messages"], | |
api_key=api_key, | |
additional_args={"complete_input_dict": data}, | |
original_response=str(e), | |
) | |
if hasattr(e, "status_code"): | |
raise e | |
else: | |
raise AzureOpenAIError(status_code=500, message=message, body=body) | |
def streaming( | |
self, | |
logging_obj, | |
api_base: str, | |
api_key: str, | |
api_version: str, | |
dynamic_params: bool, | |
data: dict, | |
model: str, | |
timeout: Any, | |
max_retries: int, | |
azure_ad_token: Optional[str] = None, | |
azure_ad_token_provider: Optional[Callable] = None, | |
client=None, | |
litellm_params: Optional[dict] = {}, | |
): | |
# init AzureOpenAI Client | |
azure_client_params = { | |
"api_version": api_version, | |
"azure_endpoint": api_base, | |
"azure_deployment": model, | |
"http_client": litellm.client_session, | |
"max_retries": max_retries, | |
"timeout": timeout, | |
} | |
azure_client_params = select_azure_base_url_or_endpoint( | |
azure_client_params=azure_client_params | |
) | |
if api_key is not None: | |
azure_client_params["api_key"] = api_key | |
elif azure_ad_token is not None: | |
if azure_ad_token.startswith("oidc/"): | |
azure_ad_token = get_azure_ad_token_from_oidc(azure_ad_token) | |
azure_client_params["azure_ad_token"] = azure_ad_token | |
elif azure_ad_token_provider is not None: | |
azure_client_params["azure_ad_token_provider"] = azure_ad_token_provider | |
azure_client = self.get_azure_openai_client( | |
api_version=api_version, | |
api_base=api_base, | |
api_key=api_key, | |
model=model, | |
client=client, | |
_is_async=False, | |
litellm_params=litellm_params, | |
) | |
if not isinstance(azure_client, AzureOpenAI): | |
raise AzureOpenAIError( | |
status_code=500, | |
message="azure_client is not an instance of AzureOpenAI", | |
) | |
## LOGGING | |
logging_obj.pre_call( | |
input=data["messages"], | |
api_key=azure_client.api_key, | |
additional_args={ | |
"headers": { | |
"api_key": api_key, | |
"azure_ad_token": azure_ad_token, | |
}, | |
"api_base": azure_client._base_url._uri_reference, | |
"acompletion": True, | |
"complete_input_dict": data, | |
}, | |
) | |
headers, response = self.make_sync_azure_openai_chat_completion_request( | |
azure_client=azure_client, data=data, timeout=timeout | |
) | |
streamwrapper = CustomStreamWrapper( | |
completion_stream=response, | |
model=model, | |
custom_llm_provider="azure", | |
logging_obj=logging_obj, | |
stream_options=data.get("stream_options", None), | |
_response_headers=process_azure_headers(headers), | |
) | |
return streamwrapper | |
async def async_streaming( | |
self, | |
logging_obj: LiteLLMLoggingObj, | |
api_base: str, | |
api_key: str, | |
api_version: str, | |
dynamic_params: bool, | |
data: dict, | |
model: str, | |
timeout: Any, | |
max_retries: int, | |
azure_ad_token: Optional[str] = None, | |
azure_ad_token_provider: Optional[Callable] = None, | |
client=None, | |
litellm_params: Optional[dict] = {}, | |
): | |
try: | |
azure_client = self.get_azure_openai_client( | |
api_version=api_version, | |
api_base=api_base, | |
api_key=api_key, | |
model=model, | |
client=client, | |
_is_async=True, | |
litellm_params=litellm_params, | |
) | |
if not isinstance(azure_client, AsyncAzureOpenAI): | |
raise ValueError("Azure client is not an instance of AsyncAzureOpenAI") | |
## LOGGING | |
logging_obj.pre_call( | |
input=data["messages"], | |
api_key=azure_client.api_key, | |
additional_args={ | |
"headers": { | |
"api_key": api_key, | |
"azure_ad_token": azure_ad_token, | |
}, | |
"api_base": azure_client._base_url._uri_reference, | |
"acompletion": True, | |
"complete_input_dict": data, | |
}, | |
) | |
headers, response = await self.make_azure_openai_chat_completion_request( | |
azure_client=azure_client, | |
data=data, | |
timeout=timeout, | |
logging_obj=logging_obj, | |
) | |
logging_obj.model_call_details["response_headers"] = headers | |
# return response | |
streamwrapper = CustomStreamWrapper( | |
completion_stream=response, | |
model=model, | |
custom_llm_provider="azure", | |
logging_obj=logging_obj, | |
stream_options=data.get("stream_options", None), | |
_response_headers=headers, | |
) | |
return streamwrapper ## DO NOT make this into an async for ... loop, it will yield an async generator, which won't raise errors if the response fails | |
except Exception as e: | |
status_code = getattr(e, "status_code", 500) | |
error_headers = getattr(e, "headers", None) | |
error_response = getattr(e, "response", None) | |
message = getattr(e, "message", str(e)) | |
error_body = getattr(e, "body", None) | |
if error_headers is None and error_response: | |
error_headers = getattr(error_response, "headers", None) | |
raise AzureOpenAIError( | |
status_code=status_code, | |
message=message, | |
headers=error_headers, | |
body=error_body, | |
) | |
async def aembedding( | |
self, | |
model: str, | |
data: dict, | |
model_response: EmbeddingResponse, | |
input: list, | |
logging_obj: LiteLLMLoggingObj, | |
api_base: str, | |
api_key: Optional[str] = None, | |
api_version: Optional[str] = None, | |
client: Optional[AsyncAzureOpenAI] = None, | |
timeout: Optional[Union[float, httpx.Timeout]] = None, | |
max_retries: Optional[int] = None, | |
azure_ad_token: Optional[str] = None, | |
azure_ad_token_provider: Optional[Callable] = None, | |
litellm_params: Optional[dict] = {}, | |
) -> EmbeddingResponse: | |
response = None | |
try: | |
openai_aclient = self.get_azure_openai_client( | |
api_version=api_version, | |
api_base=api_base, | |
api_key=api_key, | |
model=model, | |
_is_async=True, | |
client=client, | |
litellm_params=litellm_params, | |
) | |
if not isinstance(openai_aclient, AsyncAzureOpenAI): | |
raise ValueError("Azure client is not an instance of AsyncAzureOpenAI") | |
raw_response = await openai_aclient.embeddings.with_raw_response.create( | |
**data, timeout=timeout | |
) | |
headers = dict(raw_response.headers) | |
response = raw_response.parse() | |
stringified_response = response.model_dump() | |
## LOGGING | |
logging_obj.post_call( | |
input=input, | |
api_key=api_key, | |
additional_args={"complete_input_dict": data}, | |
original_response=stringified_response, | |
) | |
embedding_response = convert_to_model_response_object( | |
response_object=stringified_response, | |
model_response_object=model_response, | |
hidden_params={"headers": headers}, | |
_response_headers=process_azure_headers(headers), | |
response_type="embedding", | |
) | |
if not isinstance(embedding_response, EmbeddingResponse): | |
raise AzureOpenAIError( | |
status_code=500, | |
message="embedding_response is not an instance of EmbeddingResponse", | |
) | |
return embedding_response | |
except Exception as e: | |
## LOGGING | |
logging_obj.post_call( | |
input=input, | |
api_key=api_key, | |
additional_args={"complete_input_dict": data}, | |
original_response=str(e), | |
) | |
raise e | |
def embedding( | |
self, | |
model: str, | |
input: list, | |
api_base: str, | |
api_version: str, | |
timeout: float, | |
logging_obj: LiteLLMLoggingObj, | |
model_response: EmbeddingResponse, | |
optional_params: dict, | |
api_key: Optional[str] = None, | |
azure_ad_token: Optional[str] = None, | |
azure_ad_token_provider: Optional[Callable] = None, | |
max_retries: Optional[int] = None, | |
client=None, | |
aembedding=None, | |
headers: Optional[dict] = None, | |
litellm_params: Optional[dict] = None, | |
) -> Union[EmbeddingResponse, Coroutine[Any, Any, EmbeddingResponse]]: | |
if headers: | |
optional_params["extra_headers"] = headers | |
if self._client_session is None: | |
self._client_session = self.create_client_session() | |
try: | |
data = {"model": model, "input": input, **optional_params} | |
if max_retries is None: | |
max_retries = litellm.DEFAULT_MAX_RETRIES | |
## LOGGING | |
logging_obj.pre_call( | |
input=input, | |
api_key=api_key, | |
additional_args={ | |
"complete_input_dict": data, | |
"headers": {"api_key": api_key, "azure_ad_token": azure_ad_token}, | |
}, | |
) | |
if aembedding is True: | |
return self.aembedding( | |
data=data, | |
input=input, | |
model=model, | |
logging_obj=logging_obj, | |
api_key=api_key, | |
model_response=model_response, | |
timeout=timeout, | |
client=client, | |
litellm_params=litellm_params, | |
api_base=api_base, | |
) | |
azure_client = self.get_azure_openai_client( | |
api_version=api_version, | |
api_base=api_base, | |
api_key=api_key, | |
model=model, | |
_is_async=False, | |
client=client, | |
litellm_params=litellm_params, | |
) | |
if not isinstance(azure_client, AzureOpenAI): | |
raise AzureOpenAIError( | |
status_code=500, | |
message="azure_client is not an instance of AzureOpenAI", | |
) | |
## COMPLETION CALL | |
raw_response = azure_client.embeddings.with_raw_response.create(**data, timeout=timeout) # type: ignore | |
headers = dict(raw_response.headers) | |
response = raw_response.parse() | |
## LOGGING | |
logging_obj.post_call( | |
input=input, | |
api_key=api_key, | |
additional_args={"complete_input_dict": data, "api_base": api_base}, | |
original_response=response, | |
) | |
return convert_to_model_response_object(response_object=response.model_dump(), model_response_object=model_response, response_type="embedding", _response_headers=process_azure_headers(headers)) # type: ignore | |
except AzureOpenAIError as e: | |
raise e | |
except Exception as e: | |
status_code = getattr(e, "status_code", 500) | |
error_headers = getattr(e, "headers", None) | |
error_response = getattr(e, "response", None) | |
if error_headers is None and error_response: | |
error_headers = getattr(error_response, "headers", None) | |
raise AzureOpenAIError( | |
status_code=status_code, message=str(e), headers=error_headers | |
) | |
async def make_async_azure_httpx_request( | |
self, | |
client: Optional[AsyncHTTPHandler], | |
timeout: Optional[Union[float, httpx.Timeout]], | |
api_base: str, | |
api_version: str, | |
api_key: str, | |
data: dict, | |
headers: dict, | |
) -> httpx.Response: | |
""" | |
Implemented for azure dall-e-2 image gen calls | |
Alternative to needing a custom transport implementation | |
""" | |
if client is None: | |
_params = {} | |
if timeout is not None: | |
if isinstance(timeout, float) or isinstance(timeout, int): | |
_httpx_timeout = httpx.Timeout(timeout) | |
_params["timeout"] = _httpx_timeout | |
else: | |
_params["timeout"] = httpx.Timeout(timeout=600.0, connect=5.0) | |
async_handler = get_async_httpx_client( | |
llm_provider=LlmProviders.AZURE, | |
params=_params, | |
) | |
else: | |
async_handler = client # type: ignore | |
if ( | |
"images/generations" in api_base | |
and api_version | |
in [ # dall-e-3 starts from `2023-12-01-preview` so we should be able to avoid conflict | |
"2023-06-01-preview", | |
"2023-07-01-preview", | |
"2023-08-01-preview", | |
"2023-09-01-preview", | |
"2023-10-01-preview", | |
] | |
): # CREATE + POLL for azure dall-e-2 calls | |
api_base = modify_url( | |
original_url=api_base, new_path="/openai/images/generations:submit" | |
) | |
data.pop( | |
"model", None | |
) # REMOVE 'model' from dall-e-2 arg https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#request-a-generated-image-dall-e-2-preview | |
response = await async_handler.post( | |
url=api_base, | |
data=json.dumps(data), | |
headers=headers, | |
) | |
if "operation-location" in response.headers: | |
operation_location_url = response.headers["operation-location"] | |
else: | |
raise AzureOpenAIError(status_code=500, message=response.text) | |
response = await async_handler.get( | |
url=operation_location_url, | |
headers=headers, | |
) | |
await response.aread() | |
timeout_secs: int = AZURE_OPERATION_POLLING_TIMEOUT | |
start_time = time.time() | |
if "status" not in response.json(): | |
raise Exception( | |
"Expected 'status' in response. Got={}".format(response.json()) | |
) | |
while response.json()["status"] not in ["succeeded", "failed"]: | |
if time.time() - start_time > timeout_secs: | |
raise AzureOpenAIError( | |
status_code=408, message="Operation polling timed out." | |
) | |
await asyncio.sleep(int(response.headers.get("retry-after") or 10)) | |
response = await async_handler.get( | |
url=operation_location_url, | |
headers=headers, | |
) | |
await response.aread() | |
if response.json()["status"] == "failed": | |
error_data = response.json() | |
raise AzureOpenAIError(status_code=400, message=json.dumps(error_data)) | |
result = response.json()["result"] | |
return httpx.Response( | |
status_code=200, | |
headers=response.headers, | |
content=json.dumps(result).encode("utf-8"), | |
request=httpx.Request(method="POST", url="https://api.openai.com/v1"), | |
) | |
return await async_handler.post( | |
url=api_base, | |
json=data, | |
headers=headers, | |
) | |
def make_sync_azure_httpx_request( | |
self, | |
client: Optional[HTTPHandler], | |
timeout: Optional[Union[float, httpx.Timeout]], | |
api_base: str, | |
api_version: str, | |
api_key: str, | |
data: dict, | |
headers: dict, | |
) -> httpx.Response: | |
""" | |
Implemented for azure dall-e-2 image gen calls | |
Alternative to needing a custom transport implementation | |
""" | |
if client is None: | |
_params = {} | |
if timeout is not None: | |
if isinstance(timeout, float) or isinstance(timeout, int): | |
_httpx_timeout = httpx.Timeout(timeout) | |
_params["timeout"] = _httpx_timeout | |
else: | |
_params["timeout"] = httpx.Timeout(timeout=600.0, connect=5.0) | |
sync_handler = HTTPHandler(**_params, client=litellm.client_session) # type: ignore | |
else: | |
sync_handler = client # type: ignore | |
if ( | |
"images/generations" in api_base | |
and api_version | |
in [ # dall-e-3 starts from `2023-12-01-preview` so we should be able to avoid conflict | |
"2023-06-01-preview", | |
"2023-07-01-preview", | |
"2023-08-01-preview", | |
"2023-09-01-preview", | |
"2023-10-01-preview", | |
] | |
): # CREATE + POLL for azure dall-e-2 calls | |
api_base = modify_url( | |
original_url=api_base, new_path="/openai/images/generations:submit" | |
) | |
data.pop( | |
"model", None | |
) # REMOVE 'model' from dall-e-2 arg https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#request-a-generated-image-dall-e-2-preview | |
response = sync_handler.post( | |
url=api_base, | |
data=json.dumps(data), | |
headers=headers, | |
) | |
if "operation-location" in response.headers: | |
operation_location_url = response.headers["operation-location"] | |
else: | |
raise AzureOpenAIError(status_code=500, message=response.text) | |
response = sync_handler.get( | |
url=operation_location_url, | |
headers=headers, | |
) | |
response.read() | |
timeout_secs: int = AZURE_OPERATION_POLLING_TIMEOUT | |
start_time = time.time() | |
if "status" not in response.json(): | |
raise Exception( | |
"Expected 'status' in response. Got={}".format(response.json()) | |
) | |
while response.json()["status"] not in ["succeeded", "failed"]: | |
if time.time() - start_time > timeout_secs: | |
raise AzureOpenAIError( | |
status_code=408, message="Operation polling timed out." | |
) | |
time.sleep(int(response.headers.get("retry-after") or 10)) | |
response = sync_handler.get( | |
url=operation_location_url, | |
headers=headers, | |
) | |
response.read() | |
if response.json()["status"] == "failed": | |
error_data = response.json() | |
raise AzureOpenAIError(status_code=400, message=json.dumps(error_data)) | |
result = response.json()["result"] | |
return httpx.Response( | |
status_code=200, | |
headers=response.headers, | |
content=json.dumps(result).encode("utf-8"), | |
request=httpx.Request(method="POST", url="https://api.openai.com/v1"), | |
) | |
return sync_handler.post( | |
url=api_base, | |
json=data, | |
headers=headers, | |
) | |
def create_azure_base_url( | |
self, azure_client_params: dict, model: Optional[str] | |
) -> str: | |
api_base: str = azure_client_params.get( | |
"azure_endpoint", "" | |
) # "https://example-endpoint.openai.azure.com" | |
if api_base.endswith("/"): | |
api_base = api_base.rstrip("/") | |
api_version: str = azure_client_params.get("api_version", "") | |
if model is None: | |
model = "" | |
if "/openai/deployments/" in api_base: | |
base_url_with_deployment = api_base | |
else: | |
base_url_with_deployment = api_base + "/openai/deployments/" + model | |
base_url_with_deployment += "/images/generations" | |
base_url_with_deployment += "?api-version=" + api_version | |
return base_url_with_deployment | |
async def aimage_generation( | |
self, | |
data: dict, | |
model_response: ModelResponse, | |
azure_client_params: dict, | |
api_key: str, | |
input: list, | |
logging_obj: LiteLLMLoggingObj, | |
headers: dict, | |
client=None, | |
timeout=None, | |
) -> litellm.ImageResponse: | |
response: Optional[dict] = None | |
try: | |
# response = await azure_client.images.generate(**data, timeout=timeout) | |
api_base: str = azure_client_params.get( | |
"api_base", "" | |
) # "https://example-endpoint.openai.azure.com" | |
if api_base.endswith("/"): | |
api_base = api_base.rstrip("/") | |
api_version: str = azure_client_params.get("api_version", "") | |
img_gen_api_base = self.create_azure_base_url( | |
azure_client_params=azure_client_params, model=data.get("model", "") | |
) | |
## LOGGING | |
logging_obj.pre_call( | |
input=data["prompt"], | |
api_key=api_key, | |
additional_args={ | |
"complete_input_dict": data, | |
"api_base": img_gen_api_base, | |
"headers": headers, | |
}, | |
) | |
httpx_response: httpx.Response = await self.make_async_azure_httpx_request( | |
client=None, | |
timeout=timeout, | |
api_base=img_gen_api_base, | |
api_version=api_version, | |
api_key=api_key, | |
data=data, | |
headers=headers, | |
) | |
response = httpx_response.json() | |
stringified_response = response | |
## LOGGING | |
logging_obj.post_call( | |
input=input, | |
api_key=api_key, | |
additional_args={"complete_input_dict": data}, | |
original_response=stringified_response, | |
) | |
return convert_to_model_response_object( # type: ignore | |
response_object=stringified_response, | |
model_response_object=model_response, | |
response_type="image_generation", | |
) | |
except Exception as e: | |
## LOGGING | |
logging_obj.post_call( | |
input=input, | |
api_key=api_key, | |
additional_args={"complete_input_dict": data}, | |
original_response=str(e), | |
) | |
raise e | |
def image_generation( | |
self, | |
prompt: str, | |
timeout: float, | |
optional_params: dict, | |
logging_obj: LiteLLMLoggingObj, | |
headers: dict, | |
model: Optional[str] = None, | |
api_key: Optional[str] = None, | |
api_base: Optional[str] = None, | |
api_version: Optional[str] = None, | |
model_response: Optional[ImageResponse] = None, | |
azure_ad_token: Optional[str] = None, | |
azure_ad_token_provider: Optional[Callable] = None, | |
client=None, | |
aimg_generation=None, | |
litellm_params: Optional[dict] = None, | |
) -> ImageResponse: | |
try: | |
if model and len(model) > 0: | |
model = model | |
else: | |
model = None | |
## BASE MODEL CHECK | |
if ( | |
model_response is not None | |
and optional_params.get("base_model", None) is not None | |
): | |
model_response._hidden_params["model"] = optional_params.pop( | |
"base_model" | |
) | |
data = {"model": model, "prompt": prompt, **optional_params} | |
max_retries = data.pop("max_retries", 2) | |
if not isinstance(max_retries, int): | |
raise AzureOpenAIError( | |
status_code=422, message="max retries must be an int" | |
) | |
# init AzureOpenAI Client | |
azure_client_params: Dict[str, Any] = self.initialize_azure_sdk_client( | |
litellm_params=litellm_params or {}, | |
api_key=api_key, | |
model_name=model or "", | |
api_version=api_version, | |
api_base=api_base, | |
is_async=False, | |
) | |
if aimg_generation is True: | |
return self.aimage_generation(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_key=api_key, client=client, azure_client_params=azure_client_params, timeout=timeout, headers=headers) # type: ignore | |
img_gen_api_base = self.create_azure_base_url( | |
azure_client_params=azure_client_params, model=data.get("model", "") | |
) | |
## LOGGING | |
logging_obj.pre_call( | |
input=data["prompt"], | |
api_key=api_key, | |
additional_args={ | |
"complete_input_dict": data, | |
"api_base": img_gen_api_base, | |
"headers": headers, | |
}, | |
) | |
httpx_response: httpx.Response = self.make_sync_azure_httpx_request( | |
client=None, | |
timeout=timeout, | |
api_base=img_gen_api_base, | |
api_version=api_version or "", | |
api_key=api_key or "", | |
data=data, | |
headers=headers, | |
) | |
response = httpx_response.json() | |
## LOGGING | |
logging_obj.post_call( | |
input=prompt, | |
api_key=api_key, | |
additional_args={"complete_input_dict": data}, | |
original_response=response, | |
) | |
# return response | |
return convert_to_model_response_object(response_object=response, model_response_object=model_response, response_type="image_generation") # type: ignore | |
except AzureOpenAIError as e: | |
raise e | |
except Exception as e: | |
error_code = getattr(e, "status_code", None) | |
if error_code is not None: | |
raise AzureOpenAIError(status_code=error_code, message=str(e)) | |
else: | |
raise AzureOpenAIError(status_code=500, message=str(e)) | |
def audio_speech( | |
self, | |
model: str, | |
input: str, | |
voice: str, | |
optional_params: dict, | |
api_key: Optional[str], | |
api_base: Optional[str], | |
api_version: Optional[str], | |
organization: Optional[str], | |
max_retries: int, | |
timeout: Union[float, httpx.Timeout], | |
azure_ad_token: Optional[str] = None, | |
azure_ad_token_provider: Optional[Callable] = None, | |
aspeech: Optional[bool] = None, | |
client=None, | |
litellm_params: Optional[dict] = None, | |
) -> HttpxBinaryResponseContent: | |
max_retries = optional_params.pop("max_retries", 2) | |
if aspeech is not None and aspeech is True: | |
return self.async_audio_speech( | |
model=model, | |
input=input, | |
voice=voice, | |
optional_params=optional_params, | |
api_key=api_key, | |
api_base=api_base, | |
api_version=api_version, | |
azure_ad_token=azure_ad_token, | |
azure_ad_token_provider=azure_ad_token_provider, | |
max_retries=max_retries, | |
timeout=timeout, | |
client=client, | |
litellm_params=litellm_params, | |
) # type: ignore | |
azure_client: AzureOpenAI = self.get_azure_openai_client( | |
api_base=api_base, | |
api_version=api_version, | |
api_key=api_key, | |
model=model, | |
_is_async=False, | |
client=client, | |
litellm_params=litellm_params, | |
) # type: ignore | |
response = azure_client.audio.speech.create( | |
model=model, | |
voice=voice, # type: ignore | |
input=input, | |
**optional_params, | |
) | |
return HttpxBinaryResponseContent(response=response.response) | |
async def async_audio_speech( | |
self, | |
model: str, | |
input: str, | |
voice: str, | |
optional_params: dict, | |
api_key: Optional[str], | |
api_base: Optional[str], | |
api_version: Optional[str], | |
azure_ad_token: Optional[str], | |
azure_ad_token_provider: Optional[Callable], | |
max_retries: int, | |
timeout: Union[float, httpx.Timeout], | |
client=None, | |
litellm_params: Optional[dict] = None, | |
) -> HttpxBinaryResponseContent: | |
azure_client: AsyncAzureOpenAI = self.get_azure_openai_client( | |
api_base=api_base, | |
api_version=api_version, | |
api_key=api_key, | |
model=model, | |
_is_async=True, | |
client=client, | |
litellm_params=litellm_params, | |
) # type: ignore | |
azure_response = await azure_client.audio.speech.create( | |
model=model, | |
voice=voice, # type: ignore | |
input=input, | |
**optional_params, | |
) | |
return HttpxBinaryResponseContent(response=azure_response.response) | |
def get_headers( | |
self, | |
model: Optional[str], | |
api_key: str, | |
api_base: str, | |
api_version: str, | |
timeout: float, | |
mode: str, | |
messages: Optional[list] = None, | |
input: Optional[list] = None, | |
prompt: Optional[str] = None, | |
) -> dict: | |
client_session = litellm.client_session or httpx.Client() | |
if "gateway.ai.cloudflare.com" in api_base: | |
## build base url - assume api base includes resource name | |
if not api_base.endswith("/"): | |
api_base += "/" | |
api_base += f"{model}" | |
client = AzureOpenAI( | |
base_url=api_base, | |
api_version=api_version, | |
api_key=api_key, | |
timeout=timeout, | |
http_client=client_session, | |
) | |
model = None | |
# cloudflare ai gateway, needs model=None | |
else: | |
client = AzureOpenAI( | |
api_version=api_version, | |
azure_endpoint=api_base, | |
api_key=api_key, | |
timeout=timeout, | |
http_client=client_session, | |
) | |
# only run this check if it's not cloudflare ai gateway | |
if model is None and mode != "image_generation": | |
raise Exception("model is not set") | |
completion = None | |
if messages is None: | |
messages = [{"role": "user", "content": "Hey"}] | |
try: | |
completion = client.chat.completions.with_raw_response.create( | |
model=model, # type: ignore | |
messages=messages, # type: ignore | |
) | |
except Exception as e: | |
raise e | |
response = {} | |
if completion is None or not hasattr(completion, "headers"): | |
raise Exception("invalid completion response") | |
if ( | |
completion.headers.get("x-ratelimit-remaining-requests", None) is not None | |
): # not provided for dall-e requests | |
response["x-ratelimit-remaining-requests"] = completion.headers[ | |
"x-ratelimit-remaining-requests" | |
] | |
if completion.headers.get("x-ratelimit-remaining-tokens", None) is not None: | |
response["x-ratelimit-remaining-tokens"] = completion.headers[ | |
"x-ratelimit-remaining-tokens" | |
] | |
if completion.headers.get("x-ms-region", None) is not None: | |
response["x-ms-region"] = completion.headers["x-ms-region"] | |
return response | |