Spaces:
Sleeping
Sleeping
""" | |
Translation logic for anthropic's `/v1/complete` endpoint | |
Litellm provider slug: `anthropic_text/<model_name>` | |
""" | |
import json | |
import time | |
from typing import AsyncIterator, Dict, Iterator, List, Optional, Union | |
import httpx | |
import litellm | |
from litellm.constants import DEFAULT_MAX_TOKENS | |
from litellm.litellm_core_utils.prompt_templates.factory import ( | |
custom_prompt, | |
prompt_factory, | |
) | |
from litellm.llms.base_llm.base_model_iterator import BaseModelResponseIterator | |
from litellm.llms.base_llm.chat.transformation import ( | |
BaseConfig, | |
BaseLLMException, | |
LiteLLMLoggingObj, | |
) | |
from litellm.types.llms.openai import AllMessageValues | |
from litellm.types.utils import ( | |
ChatCompletionToolCallChunk, | |
ChatCompletionUsageBlock, | |
GenericStreamingChunk, | |
ModelResponse, | |
Usage, | |
) | |
class AnthropicTextError(BaseLLMException): | |
def __init__(self, status_code, message): | |
self.status_code = status_code | |
self.message = message | |
self.request = httpx.Request( | |
method="POST", url="https://api.anthropic.com/v1/complete" | |
) | |
self.response = httpx.Response(status_code=status_code, request=self.request) | |
super().__init__( | |
message=self.message, | |
status_code=self.status_code, | |
request=self.request, | |
response=self.response, | |
) # Call the base class constructor with the parameters it needs | |
class AnthropicTextConfig(BaseConfig): | |
""" | |
Reference: https://docs.anthropic.com/claude/reference/complete_post | |
to pass metadata to anthropic, it's {"user_id": "any-relevant-information"} | |
""" | |
max_tokens_to_sample: Optional[ | |
int | |
] = litellm.max_tokens # anthropic requires a default | |
stop_sequences: Optional[list] = None | |
temperature: Optional[int] = None | |
top_p: Optional[int] = None | |
top_k: Optional[int] = None | |
metadata: Optional[dict] = None | |
def __init__( | |
self, | |
max_tokens_to_sample: Optional[ | |
int | |
] = DEFAULT_MAX_TOKENS, # anthropic requires a default | |
stop_sequences: Optional[list] = None, | |
temperature: Optional[int] = None, | |
top_p: Optional[int] = None, | |
top_k: Optional[int] = None, | |
metadata: Optional[dict] = None, | |
) -> None: | |
locals_ = locals().copy() | |
for key, value in locals_.items(): | |
if key != "self" and value is not None: | |
setattr(self.__class__, key, value) | |
# makes headers for API call | |
def validate_environment( | |
self, | |
headers: dict, | |
model: str, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
api_key: Optional[str] = None, | |
api_base: Optional[str] = None, | |
) -> dict: | |
if api_key is None: | |
raise ValueError( | |
"Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params" | |
) | |
_headers = { | |
"accept": "application/json", | |
"anthropic-version": "2023-06-01", | |
"content-type": "application/json", | |
"x-api-key": api_key, | |
} | |
headers.update(_headers) | |
return headers | |
def transform_request( | |
self, | |
model: str, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
headers: dict, | |
) -> dict: | |
prompt = self._get_anthropic_text_prompt_from_messages( | |
messages=messages, model=model | |
) | |
## Load Config | |
config = litellm.AnthropicTextConfig.get_config() | |
for k, v in config.items(): | |
if ( | |
k not in optional_params | |
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in | |
optional_params[k] = v | |
data = { | |
"model": model, | |
"prompt": prompt, | |
**optional_params, | |
} | |
return data | |
def get_supported_openai_params(self, model: str): | |
""" | |
Anthropic /complete API Ref: https://docs.anthropic.com/en/api/complete | |
""" | |
return [ | |
"stream", | |
"max_tokens", | |
"max_completion_tokens", | |
"stop", | |
"temperature", | |
"top_p", | |
"extra_headers", | |
"user", | |
] | |
def map_openai_params( | |
self, | |
non_default_params: dict, | |
optional_params: dict, | |
model: str, | |
drop_params: bool, | |
) -> dict: | |
""" | |
Follows the same logic as the AnthropicConfig.map_openai_params method (which is the Anthropic /messages API) | |
Note: the only difference is in the get supported openai params method between the AnthropicConfig and AnthropicTextConfig | |
API Ref: https://docs.anthropic.com/en/api/complete | |
""" | |
for param, value in non_default_params.items(): | |
if param == "max_tokens": | |
optional_params["max_tokens_to_sample"] = value | |
if param == "max_completion_tokens": | |
optional_params["max_tokens_to_sample"] = value | |
if param == "stream" and value is True: | |
optional_params["stream"] = value | |
if param == "stop" and (isinstance(value, str) or isinstance(value, list)): | |
_value = litellm.AnthropicConfig()._map_stop_sequences(value) | |
if _value is not None: | |
optional_params["stop_sequences"] = _value | |
if param == "temperature": | |
optional_params["temperature"] = value | |
if param == "top_p": | |
optional_params["top_p"] = value | |
if param == "user": | |
optional_params["metadata"] = {"user_id": value} | |
return optional_params | |
def transform_response( | |
self, | |
model: str, | |
raw_response: httpx.Response, | |
model_response: ModelResponse, | |
logging_obj: LiteLLMLoggingObj, | |
request_data: dict, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
encoding: str, | |
api_key: Optional[str] = None, | |
json_mode: Optional[bool] = None, | |
) -> ModelResponse: | |
try: | |
completion_response = raw_response.json() | |
except Exception: | |
raise AnthropicTextError( | |
message=raw_response.text, status_code=raw_response.status_code | |
) | |
prompt = self._get_anthropic_text_prompt_from_messages( | |
messages=messages, model=model | |
) | |
if "error" in completion_response: | |
raise AnthropicTextError( | |
message=str(completion_response["error"]), | |
status_code=raw_response.status_code, | |
) | |
else: | |
if len(completion_response["completion"]) > 0: | |
model_response.choices[0].message.content = completion_response[ # type: ignore | |
"completion" | |
] | |
model_response.choices[0].finish_reason = completion_response["stop_reason"] | |
## CALCULATING USAGE | |
prompt_tokens = len( | |
encoding.encode(prompt) | |
) ##[TODO] use the anthropic tokenizer here | |
completion_tokens = len( | |
encoding.encode(model_response["choices"][0]["message"].get("content", "")) | |
) ##[TODO] use the anthropic tokenizer here | |
model_response.created = int(time.time()) | |
model_response.model = model | |
usage = Usage( | |
prompt_tokens=prompt_tokens, | |
completion_tokens=completion_tokens, | |
total_tokens=prompt_tokens + completion_tokens, | |
) | |
setattr(model_response, "usage", usage) | |
return model_response | |
def get_error_class( | |
self, error_message: str, status_code: int, headers: Union[Dict, httpx.Headers] | |
) -> BaseLLMException: | |
return AnthropicTextError( | |
status_code=status_code, | |
message=error_message, | |
) | |
def _is_anthropic_text_model(model: str) -> bool: | |
return model == "claude-2" or model == "claude-instant-1" | |
def _get_anthropic_text_prompt_from_messages( | |
self, messages: List[AllMessageValues], model: str | |
) -> str: | |
custom_prompt_dict = litellm.custom_prompt_dict | |
if model in custom_prompt_dict: | |
# check if the model has a registered custom prompt | |
model_prompt_details = custom_prompt_dict[model] | |
prompt = custom_prompt( | |
role_dict=model_prompt_details["roles"], | |
initial_prompt_value=model_prompt_details["initial_prompt_value"], | |
final_prompt_value=model_prompt_details["final_prompt_value"], | |
messages=messages, | |
) | |
else: | |
prompt = prompt_factory( | |
model=model, messages=messages, custom_llm_provider="anthropic" | |
) | |
return str(prompt) | |
def get_model_response_iterator( | |
self, | |
streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse], | |
sync_stream: bool, | |
json_mode: Optional[bool] = False, | |
): | |
return AnthropicTextCompletionResponseIterator( | |
streaming_response=streaming_response, | |
sync_stream=sync_stream, | |
json_mode=json_mode, | |
) | |
class AnthropicTextCompletionResponseIterator(BaseModelResponseIterator): | |
def chunk_parser(self, chunk: dict) -> GenericStreamingChunk: | |
try: | |
text = "" | |
tool_use: Optional[ChatCompletionToolCallChunk] = None | |
is_finished = False | |
finish_reason = "" | |
usage: Optional[ChatCompletionUsageBlock] = None | |
provider_specific_fields = None | |
index = int(chunk.get("index", 0)) | |
_chunk_text = chunk.get("completion", None) | |
if _chunk_text is not None and isinstance(_chunk_text, str): | |
text = _chunk_text | |
finish_reason = chunk.get("stop_reason", None) | |
if finish_reason is not None: | |
is_finished = True | |
returned_chunk = GenericStreamingChunk( | |
text=text, | |
tool_use=tool_use, | |
is_finished=is_finished, | |
finish_reason=finish_reason, | |
usage=usage, | |
index=index, | |
provider_specific_fields=provider_specific_fields, | |
) | |
return returned_chunk | |
except json.JSONDecodeError: | |
raise ValueError(f"Failed to decode JSON from chunk: {chunk}") | |