Shyamnath's picture
Push core package and essential files
469eae6
"""
This file contains common utils for anthropic calls.
"""
from typing import Dict, List, Optional, Union
import httpx
import litellm
from litellm.llms.base_llm.base_utils import BaseLLMModelInfo
from litellm.llms.base_llm.chat.transformation import BaseLLMException
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.anthropic import AllAnthropicToolsValues
from litellm.types.llms.openai import AllMessageValues
class AnthropicError(BaseLLMException):
def __init__(
self,
status_code: int,
message,
headers: Optional[httpx.Headers] = None,
):
super().__init__(status_code=status_code, message=message, headers=headers)
class AnthropicModelInfo(BaseLLMModelInfo):
def is_cache_control_set(self, messages: List[AllMessageValues]) -> bool:
"""
Return if {"cache_control": ..} in message content block
Used to check if anthropic prompt caching headers need to be set.
"""
for message in messages:
if message.get("cache_control", None) is not None:
return True
_message_content = message.get("content")
if _message_content is not None and isinstance(_message_content, list):
for content in _message_content:
if "cache_control" in content:
return True
return False
def is_computer_tool_used(
self, tools: Optional[List[AllAnthropicToolsValues]]
) -> bool:
if tools is None:
return False
for tool in tools:
if "type" in tool and tool["type"].startswith("computer_"):
return True
return False
def is_pdf_used(self, messages: List[AllMessageValues]) -> bool:
"""
Set to true if media passed into messages.
"""
for message in messages:
if (
"content" in message
and message["content"] is not None
and isinstance(message["content"], list)
):
for content in message["content"]:
if "type" in content and content["type"] != "text":
return True
return False
def _get_user_anthropic_beta_headers(
self, anthropic_beta_header: Optional[str]
) -> Optional[List[str]]:
if anthropic_beta_header is None:
return None
return anthropic_beta_header.split(",")
def get_anthropic_headers(
self,
api_key: str,
anthropic_version: Optional[str] = None,
computer_tool_used: bool = False,
prompt_caching_set: bool = False,
pdf_used: bool = False,
is_vertex_request: bool = False,
user_anthropic_beta_headers: Optional[List[str]] = None,
) -> dict:
betas = set()
if prompt_caching_set:
betas.add("prompt-caching-2024-07-31")
if computer_tool_used:
betas.add("computer-use-2024-10-22")
if pdf_used:
betas.add("pdfs-2024-09-25")
headers = {
"anthropic-version": anthropic_version or "2023-06-01",
"x-api-key": api_key,
"accept": "application/json",
"content-type": "application/json",
}
if user_anthropic_beta_headers is not None:
betas.update(user_anthropic_beta_headers)
# Don't send any beta headers to Vertex, Vertex has failed requests when they are sent
if is_vertex_request is True:
pass
elif len(betas) > 0:
headers["anthropic-beta"] = ",".join(betas)
return headers
def validate_environment(
self,
headers: dict,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> Dict:
if api_key is None:
raise litellm.AuthenticationError(
message="Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params. Please set `ANTHROPIC_API_KEY` in your environment vars",
llm_provider="anthropic",
model=model,
)
tools = optional_params.get("tools")
prompt_caching_set = self.is_cache_control_set(messages=messages)
computer_tool_used = self.is_computer_tool_used(tools=tools)
pdf_used = self.is_pdf_used(messages=messages)
user_anthropic_beta_headers = self._get_user_anthropic_beta_headers(
anthropic_beta_header=headers.get("anthropic-beta")
)
anthropic_headers = self.get_anthropic_headers(
computer_tool_used=computer_tool_used,
prompt_caching_set=prompt_caching_set,
pdf_used=pdf_used,
api_key=api_key,
is_vertex_request=optional_params.get("is_vertex_request", False),
user_anthropic_beta_headers=user_anthropic_beta_headers,
)
headers = {**headers, **anthropic_headers}
return headers
@staticmethod
def get_api_base(api_base: Optional[str] = None) -> Optional[str]:
return (
api_base
or get_secret_str("ANTHROPIC_API_BASE")
or "https://api.anthropic.com"
)
@staticmethod
def get_api_key(api_key: Optional[str] = None) -> Optional[str]:
return api_key or get_secret_str("ANTHROPIC_API_KEY")
@staticmethod
def get_base_model(model: Optional[str] = None) -> Optional[str]:
return model.replace("anthropic/", "") if model else None
def get_models(
self, api_key: Optional[str] = None, api_base: Optional[str] = None
) -> List[str]:
api_base = AnthropicModelInfo.get_api_base(api_base)
api_key = AnthropicModelInfo.get_api_key(api_key)
if api_base is None or api_key is None:
raise ValueError(
"ANTHROPIC_API_BASE or ANTHROPIC_API_KEY is not set. Please set the environment variable, to query Anthropic's `/models` endpoint."
)
response = litellm.module_level_client.get(
url=f"{api_base}/v1/models",
headers={"x-api-key": api_key, "anthropic-version": "2023-06-01"},
)
try:
response.raise_for_status()
except httpx.HTTPStatusError:
raise Exception(
f"Failed to fetch models from Anthropic. Status code: {response.status_code}, Response: {response.text}"
)
models = response.json()["data"]
litellm_model_names = []
for model in models:
stripped_model_name = model["id"]
litellm_model_name = "anthropic/" + stripped_model_name
litellm_model_names.append(litellm_model_name)
return litellm_model_names
def process_anthropic_headers(headers: Union[httpx.Headers, dict]) -> dict:
openai_headers = {}
if "anthropic-ratelimit-requests-limit" in headers:
openai_headers["x-ratelimit-limit-requests"] = headers[
"anthropic-ratelimit-requests-limit"
]
if "anthropic-ratelimit-requests-remaining" in headers:
openai_headers["x-ratelimit-remaining-requests"] = headers[
"anthropic-ratelimit-requests-remaining"
]
if "anthropic-ratelimit-tokens-limit" in headers:
openai_headers["x-ratelimit-limit-tokens"] = headers[
"anthropic-ratelimit-tokens-limit"
]
if "anthropic-ratelimit-tokens-remaining" in headers:
openai_headers["x-ratelimit-remaining-tokens"] = headers[
"anthropic-ratelimit-tokens-remaining"
]
llm_response_headers = {
"{}-{}".format("llm_provider", k): v for k, v in headers.items()
}
additional_headers = {**llm_response_headers, **openai_headers}
return additional_headers