Spaces:
Running
Running
import json | |
import os | |
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union | |
from litellm._logging import verbose_logger | |
from litellm.integrations.custom_batch_logger import CustomBatchLogger | |
from litellm.llms.custom_httpx.http_handler import ( | |
get_async_httpx_client, | |
httpxSpecialProvider, | |
) | |
from litellm.types.integrations.gcs_bucket import * | |
from litellm.types.utils import StandardCallbackDynamicParams, StandardLoggingPayload | |
if TYPE_CHECKING: | |
from litellm.llms.vertex_ai.vertex_llm_base import VertexBase | |
else: | |
VertexBase = Any | |
IAM_AUTH_KEY = "IAM_AUTH" | |
class GCSBucketBase(CustomBatchLogger): | |
def __init__(self, bucket_name: Optional[str] = None, **kwargs) -> None: | |
self.async_httpx_client = get_async_httpx_client( | |
llm_provider=httpxSpecialProvider.LoggingCallback | |
) | |
_path_service_account = os.getenv("GCS_PATH_SERVICE_ACCOUNT") | |
_bucket_name = bucket_name or os.getenv("GCS_BUCKET_NAME") | |
self.path_service_account_json: Optional[str] = _path_service_account | |
self.BUCKET_NAME: Optional[str] = _bucket_name | |
self.vertex_instances: Dict[str, VertexBase] = {} | |
super().__init__(**kwargs) | |
async def construct_request_headers( | |
self, | |
service_account_json: Optional[str], | |
vertex_instance: Optional[VertexBase] = None, | |
) -> Dict[str, str]: | |
from litellm import vertex_chat_completion | |
if vertex_instance is None: | |
vertex_instance = vertex_chat_completion | |
_auth_header, vertex_project = await vertex_instance._ensure_access_token_async( | |
credentials=service_account_json, | |
project_id=None, | |
custom_llm_provider="vertex_ai", | |
) | |
auth_header, _ = vertex_instance._get_token_and_url( | |
model="gcs-bucket", | |
auth_header=_auth_header, | |
vertex_credentials=service_account_json, | |
vertex_project=vertex_project, | |
vertex_location=None, | |
gemini_api_key=None, | |
stream=None, | |
custom_llm_provider="vertex_ai", | |
api_base=None, | |
) | |
verbose_logger.debug("constructed auth_header %s", auth_header) | |
headers = { | |
"Authorization": f"Bearer {auth_header}", # auth_header | |
"Content-Type": "application/json", | |
} | |
return headers | |
def sync_construct_request_headers(self) -> Dict[str, str]: | |
from litellm import vertex_chat_completion | |
_auth_header, vertex_project = vertex_chat_completion._ensure_access_token( | |
credentials=self.path_service_account_json, | |
project_id=None, | |
custom_llm_provider="vertex_ai", | |
) | |
auth_header, _ = vertex_chat_completion._get_token_and_url( | |
model="gcs-bucket", | |
auth_header=_auth_header, | |
vertex_credentials=self.path_service_account_json, | |
vertex_project=vertex_project, | |
vertex_location=None, | |
gemini_api_key=None, | |
stream=None, | |
custom_llm_provider="vertex_ai", | |
api_base=None, | |
) | |
verbose_logger.debug("constructed auth_header %s", auth_header) | |
headers = { | |
"Authorization": f"Bearer {auth_header}", # auth_header | |
"Content-Type": "application/json", | |
} | |
return headers | |
def _handle_folders_in_bucket_name( | |
self, | |
bucket_name: str, | |
object_name: str, | |
) -> Tuple[str, str]: | |
""" | |
Handles when the user passes a bucket name with a folder postfix | |
Example: | |
- Bucket name: "my-bucket/my-folder/dev" | |
- Object name: "my-object" | |
- Returns: bucket_name="my-bucket", object_name="my-folder/dev/my-object" | |
""" | |
if "/" in bucket_name: | |
bucket_name, prefix = bucket_name.split("/", 1) | |
object_name = f"{prefix}/{object_name}" | |
return bucket_name, object_name | |
return bucket_name, object_name | |
async def get_gcs_logging_config( | |
self, kwargs: Optional[Dict[str, Any]] = {} | |
) -> GCSLoggingConfig: | |
""" | |
This function is used to get the GCS logging config for the GCS Bucket Logger. | |
It checks if the dynamic parameters are provided in the kwargs and uses them to get the GCS logging config. | |
If no dynamic parameters are provided, it uses the default values. | |
""" | |
if kwargs is None: | |
kwargs = {} | |
standard_callback_dynamic_params: Optional[ | |
StandardCallbackDynamicParams | |
] = kwargs.get("standard_callback_dynamic_params", None) | |
bucket_name: str | |
path_service_account: Optional[str] | |
if standard_callback_dynamic_params is not None: | |
verbose_logger.debug("Using dynamic GCS logging") | |
verbose_logger.debug( | |
"standard_callback_dynamic_params: %s", standard_callback_dynamic_params | |
) | |
_bucket_name: Optional[str] = ( | |
standard_callback_dynamic_params.get("gcs_bucket_name", None) | |
or self.BUCKET_NAME | |
) | |
_path_service_account: Optional[str] = ( | |
standard_callback_dynamic_params.get("gcs_path_service_account", None) | |
or self.path_service_account_json | |
) | |
if _bucket_name is None: | |
raise ValueError( | |
"GCS_BUCKET_NAME is not set in the environment, but GCS Bucket is being used as a logging callback. Please set 'GCS_BUCKET_NAME' in the environment." | |
) | |
bucket_name = _bucket_name | |
path_service_account = _path_service_account | |
vertex_instance = await self.get_or_create_vertex_instance( | |
credentials=path_service_account | |
) | |
else: | |
# If no dynamic parameters, use the default instance | |
if self.BUCKET_NAME is None: | |
raise ValueError( | |
"GCS_BUCKET_NAME is not set in the environment, but GCS Bucket is being used as a logging callback. Please set 'GCS_BUCKET_NAME' in the environment." | |
) | |
bucket_name = self.BUCKET_NAME | |
path_service_account = self.path_service_account_json | |
vertex_instance = await self.get_or_create_vertex_instance( | |
credentials=path_service_account | |
) | |
return GCSLoggingConfig( | |
bucket_name=bucket_name, | |
vertex_instance=vertex_instance, | |
path_service_account=path_service_account, | |
) | |
async def get_or_create_vertex_instance( | |
self, credentials: Optional[str] | |
) -> VertexBase: | |
""" | |
This function is used to get the Vertex instance for the GCS Bucket Logger. | |
It checks if the Vertex instance is already created and cached, if not it creates a new instance and caches it. | |
""" | |
from litellm.llms.vertex_ai.vertex_llm_base import VertexBase | |
_in_memory_key = self._get_in_memory_key_for_vertex_instance(credentials) | |
if _in_memory_key not in self.vertex_instances: | |
vertex_instance = VertexBase() | |
await vertex_instance._ensure_access_token_async( | |
credentials=credentials, | |
project_id=None, | |
custom_llm_provider="vertex_ai", | |
) | |
self.vertex_instances[_in_memory_key] = vertex_instance | |
return self.vertex_instances[_in_memory_key] | |
def _get_in_memory_key_for_vertex_instance(self, credentials: Optional[str]) -> str: | |
""" | |
Returns key to use for caching the Vertex instance in-memory. | |
When using Vertex with Key based logging, we need to cache the Vertex instance in-memory. | |
- If a credentials string is provided, it is used as the key. | |
- If no credentials string is provided, "IAM_AUTH" is used as the key. | |
""" | |
return credentials or IAM_AUTH_KEY | |
async def download_gcs_object(self, object_name: str, **kwargs): | |
""" | |
Download an object from GCS. | |
https://cloud.google.com/storage/docs/downloading-objects#download-object-json | |
""" | |
try: | |
gcs_logging_config: GCSLoggingConfig = await self.get_gcs_logging_config( | |
kwargs=kwargs | |
) | |
headers = await self.construct_request_headers( | |
vertex_instance=gcs_logging_config["vertex_instance"], | |
service_account_json=gcs_logging_config["path_service_account"], | |
) | |
bucket_name = gcs_logging_config["bucket_name"] | |
bucket_name, object_name = self._handle_folders_in_bucket_name( | |
bucket_name=bucket_name, | |
object_name=object_name, | |
) | |
url = f"https://storage.googleapis.com/storage/v1/b/{bucket_name}/o/{object_name}?alt=media" | |
# Send the GET request to download the object | |
response = await self.async_httpx_client.get(url=url, headers=headers) | |
if response.status_code != 200: | |
verbose_logger.error( | |
"GCS object download error: %s", str(response.text) | |
) | |
return None | |
verbose_logger.debug( | |
"GCS object download response status code: %s", response.status_code | |
) | |
# Return the content of the downloaded object | |
return response.content | |
except Exception as e: | |
verbose_logger.error("GCS object download error: %s", str(e)) | |
return None | |
async def delete_gcs_object(self, object_name: str, **kwargs): | |
""" | |
Delete an object from GCS. | |
""" | |
try: | |
gcs_logging_config: GCSLoggingConfig = await self.get_gcs_logging_config( | |
kwargs=kwargs | |
) | |
headers = await self.construct_request_headers( | |
vertex_instance=gcs_logging_config["vertex_instance"], | |
service_account_json=gcs_logging_config["path_service_account"], | |
) | |
bucket_name = gcs_logging_config["bucket_name"] | |
bucket_name, object_name = self._handle_folders_in_bucket_name( | |
bucket_name=bucket_name, | |
object_name=object_name, | |
) | |
url = f"https://storage.googleapis.com/storage/v1/b/{bucket_name}/o/{object_name}" | |
# Send the DELETE request to delete the object | |
response = await self.async_httpx_client.delete(url=url, headers=headers) | |
if (response.status_code != 200) or (response.status_code != 204): | |
verbose_logger.error( | |
"GCS object delete error: %s, status code: %s", | |
str(response.text), | |
response.status_code, | |
) | |
return None | |
verbose_logger.debug( | |
"GCS object delete response status code: %s, response: %s", | |
response.status_code, | |
response.text, | |
) | |
# Return the content of the downloaded object | |
return response.text | |
except Exception as e: | |
verbose_logger.error("GCS object download error: %s", str(e)) | |
return None | |
async def _log_json_data_on_gcs( | |
self, | |
headers: Dict[str, str], | |
bucket_name: str, | |
object_name: str, | |
logging_payload: Union[StandardLoggingPayload, str], | |
): | |
""" | |
Helper function to make POST request to GCS Bucket in the specified bucket. | |
""" | |
if isinstance(logging_payload, str): | |
json_logged_payload = logging_payload | |
else: | |
json_logged_payload = json.dumps(logging_payload, default=str) | |
bucket_name, object_name = self._handle_folders_in_bucket_name( | |
bucket_name=bucket_name, | |
object_name=object_name, | |
) | |
response = await self.async_httpx_client.post( | |
headers=headers, | |
url=f"https://storage.googleapis.com/upload/storage/v1/b/{bucket_name}/o?uploadType=media&name={object_name}", | |
data=json_logged_payload, | |
) | |
if response.status_code != 200: | |
verbose_logger.error("GCS Bucket logging error: %s", str(response.text)) | |
verbose_logger.debug("GCS Bucket response %s", response) | |
verbose_logger.debug("GCS Bucket status code %s", response.status_code) | |
verbose_logger.debug("GCS Bucket response.text %s", response.text) | |
return response.json() | |