Spaces:
Running
Running
""" | |
Main File for Batches API implementation | |
https://platform.openai.com/docs/api-reference/batch | |
- create_batch() | |
- retrieve_batch() | |
- cancel_batch() | |
- list_batch() | |
""" | |
import asyncio | |
import contextvars | |
import os | |
from functools import partial | |
from typing import Any, Coroutine, Dict, Literal, Optional, Union | |
import httpx | |
import litellm | |
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj | |
from litellm.llms.azure.batches.handler import AzureBatchesAPI | |
from litellm.llms.openai.openai import OpenAIBatchesAPI | |
from litellm.llms.vertex_ai.batches.handler import VertexAIBatchPrediction | |
from litellm.secret_managers.main import get_secret_str | |
from litellm.types.llms.openai import ( | |
Batch, | |
CancelBatchRequest, | |
CreateBatchRequest, | |
RetrieveBatchRequest, | |
) | |
from litellm.types.router import GenericLiteLLMParams | |
from litellm.types.utils import LiteLLMBatch | |
from litellm.utils import client, get_litellm_params, supports_httpx_timeout | |
####### ENVIRONMENT VARIABLES ################### | |
openai_batches_instance = OpenAIBatchesAPI() | |
azure_batches_instance = AzureBatchesAPI() | |
vertex_ai_batches_instance = VertexAIBatchPrediction(gcs_bucket_name="") | |
################################################# | |
async def acreate_batch( | |
completion_window: Literal["24h"], | |
endpoint: Literal["/v1/chat/completions", "/v1/embeddings", "/v1/completions"], | |
input_file_id: str, | |
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", | |
metadata: Optional[Dict[str, str]] = None, | |
extra_headers: Optional[Dict[str, str]] = None, | |
extra_body: Optional[Dict[str, str]] = None, | |
**kwargs, | |
) -> Batch: | |
""" | |
Async: Creates and executes a batch from an uploaded file of request | |
LiteLLM Equivalent of POST: https://api.openai.com/v1/batches | |
""" | |
try: | |
loop = asyncio.get_event_loop() | |
kwargs["acreate_batch"] = True | |
# Use a partial function to pass your keyword arguments | |
func = partial( | |
create_batch, | |
completion_window, | |
endpoint, | |
input_file_id, | |
custom_llm_provider, | |
metadata, | |
extra_headers, | |
extra_body, | |
**kwargs, | |
) | |
# Add the context to the function | |
ctx = contextvars.copy_context() | |
func_with_context = partial(ctx.run, func) | |
init_response = await loop.run_in_executor(None, func_with_context) | |
if asyncio.iscoroutine(init_response): | |
response = await init_response | |
else: | |
response = init_response | |
return response | |
except Exception as e: | |
raise e | |
def create_batch( | |
completion_window: Literal["24h"], | |
endpoint: Literal["/v1/chat/completions", "/v1/embeddings", "/v1/completions"], | |
input_file_id: str, | |
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", | |
metadata: Optional[Dict[str, str]] = None, | |
extra_headers: Optional[Dict[str, str]] = None, | |
extra_body: Optional[Dict[str, str]] = None, | |
**kwargs, | |
) -> Union[LiteLLMBatch, Coroutine[Any, Any, LiteLLMBatch]]: | |
""" | |
Creates and executes a batch from an uploaded file of request | |
LiteLLM Equivalent of POST: https://api.openai.com/v1/batches | |
""" | |
try: | |
optional_params = GenericLiteLLMParams(**kwargs) | |
litellm_call_id = kwargs.get("litellm_call_id", None) | |
proxy_server_request = kwargs.get("proxy_server_request", None) | |
model_info = kwargs.get("model_info", None) | |
_is_async = kwargs.pop("acreate_batch", False) is True | |
litellm_params = get_litellm_params(**kwargs) | |
litellm_logging_obj: LiteLLMLoggingObj = kwargs.get("litellm_logging_obj", None) | |
### TIMEOUT LOGIC ### | |
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600 | |
litellm_logging_obj.update_environment_variables( | |
model=None, | |
user=None, | |
optional_params=optional_params.model_dump(), | |
litellm_params={ | |
"litellm_call_id": litellm_call_id, | |
"proxy_server_request": proxy_server_request, | |
"model_info": model_info, | |
"metadata": metadata, | |
"preset_cache_key": None, | |
"stream_response": {}, | |
**optional_params.model_dump(exclude_unset=True), | |
}, | |
custom_llm_provider=custom_llm_provider, | |
) | |
if ( | |
timeout is not None | |
and isinstance(timeout, httpx.Timeout) | |
and supports_httpx_timeout(custom_llm_provider) is False | |
): | |
read_timeout = timeout.read or 600 | |
timeout = read_timeout # default 10 min timeout | |
elif timeout is not None and not isinstance(timeout, httpx.Timeout): | |
timeout = float(timeout) # type: ignore | |
elif timeout is None: | |
timeout = 600.0 | |
_create_batch_request = CreateBatchRequest( | |
completion_window=completion_window, | |
endpoint=endpoint, | |
input_file_id=input_file_id, | |
metadata=metadata, | |
extra_headers=extra_headers, | |
extra_body=extra_body, | |
) | |
api_base: Optional[str] = None | |
if custom_llm_provider == "openai": | |
# for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there | |
api_base = ( | |
optional_params.api_base | |
or litellm.api_base | |
or os.getenv("OPENAI_BASE_URL") | |
or os.getenv("OPENAI_API_BASE") | |
or "https://api.openai.com/v1" | |
) | |
organization = ( | |
optional_params.organization | |
or litellm.organization | |
or os.getenv("OPENAI_ORGANIZATION", None) | |
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105 | |
) | |
# set API KEY | |
api_key = ( | |
optional_params.api_key | |
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there | |
or litellm.openai_key | |
or os.getenv("OPENAI_API_KEY") | |
) | |
response = openai_batches_instance.create_batch( | |
api_base=api_base, | |
api_key=api_key, | |
organization=organization, | |
create_batch_data=_create_batch_request, | |
timeout=timeout, | |
max_retries=optional_params.max_retries, | |
_is_async=_is_async, | |
) | |
elif custom_llm_provider == "azure": | |
api_base = ( | |
optional_params.api_base | |
or litellm.api_base | |
or get_secret_str("AZURE_API_BASE") | |
) | |
api_version = ( | |
optional_params.api_version | |
or litellm.api_version | |
or get_secret_str("AZURE_API_VERSION") | |
) | |
api_key = ( | |
optional_params.api_key | |
or litellm.api_key | |
or litellm.azure_key | |
or get_secret_str("AZURE_OPENAI_API_KEY") | |
or get_secret_str("AZURE_API_KEY") | |
) | |
extra_body = optional_params.get("extra_body", {}) | |
if extra_body is not None: | |
extra_body.pop("azure_ad_token", None) | |
else: | |
get_secret_str("AZURE_AD_TOKEN") # type: ignore | |
response = azure_batches_instance.create_batch( | |
_is_async=_is_async, | |
api_base=api_base, | |
api_key=api_key, | |
api_version=api_version, | |
timeout=timeout, | |
max_retries=optional_params.max_retries, | |
create_batch_data=_create_batch_request, | |
litellm_params=litellm_params, | |
) | |
elif custom_llm_provider == "vertex_ai": | |
api_base = optional_params.api_base or "" | |
vertex_ai_project = ( | |
optional_params.vertex_project | |
or litellm.vertex_project | |
or get_secret_str("VERTEXAI_PROJECT") | |
) | |
vertex_ai_location = ( | |
optional_params.vertex_location | |
or litellm.vertex_location | |
or get_secret_str("VERTEXAI_LOCATION") | |
) | |
vertex_credentials = optional_params.vertex_credentials or get_secret_str( | |
"VERTEXAI_CREDENTIALS" | |
) | |
response = vertex_ai_batches_instance.create_batch( | |
_is_async=_is_async, | |
api_base=api_base, | |
vertex_project=vertex_ai_project, | |
vertex_location=vertex_ai_location, | |
vertex_credentials=vertex_credentials, | |
timeout=timeout, | |
max_retries=optional_params.max_retries, | |
create_batch_data=_create_batch_request, | |
) | |
else: | |
raise litellm.exceptions.BadRequestError( | |
message="LiteLLM doesn't support custom_llm_provider={} for 'create_batch'".format( | |
custom_llm_provider | |
), | |
model="n/a", | |
llm_provider=custom_llm_provider, | |
response=httpx.Response( | |
status_code=400, | |
content="Unsupported provider", | |
request=httpx.Request(method="create_batch", url="https://github.com/BerriAI/litellm"), # type: ignore | |
), | |
) | |
return response | |
except Exception as e: | |
raise e | |
async def aretrieve_batch( | |
batch_id: str, | |
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", | |
metadata: Optional[Dict[str, str]] = None, | |
extra_headers: Optional[Dict[str, str]] = None, | |
extra_body: Optional[Dict[str, str]] = None, | |
**kwargs, | |
) -> LiteLLMBatch: | |
""" | |
Async: Retrieves a batch. | |
LiteLLM Equivalent of GET https://api.openai.com/v1/batches/{batch_id} | |
""" | |
try: | |
loop = asyncio.get_event_loop() | |
kwargs["aretrieve_batch"] = True | |
# Use a partial function to pass your keyword arguments | |
func = partial( | |
retrieve_batch, | |
batch_id, | |
custom_llm_provider, | |
metadata, | |
extra_headers, | |
extra_body, | |
**kwargs, | |
) | |
# Add the context to the function | |
ctx = contextvars.copy_context() | |
func_with_context = partial(ctx.run, func) | |
init_response = await loop.run_in_executor(None, func_with_context) | |
if asyncio.iscoroutine(init_response): | |
response = await init_response | |
else: | |
response = init_response # type: ignore | |
return response | |
except Exception as e: | |
raise e | |
def retrieve_batch( | |
batch_id: str, | |
custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", | |
metadata: Optional[Dict[str, str]] = None, | |
extra_headers: Optional[Dict[str, str]] = None, | |
extra_body: Optional[Dict[str, str]] = None, | |
**kwargs, | |
) -> Union[LiteLLMBatch, Coroutine[Any, Any, LiteLLMBatch]]: | |
""" | |
Retrieves a batch. | |
LiteLLM Equivalent of GET https://api.openai.com/v1/batches/{batch_id} | |
""" | |
try: | |
optional_params = GenericLiteLLMParams(**kwargs) | |
litellm_logging_obj: LiteLLMLoggingObj = kwargs.get("litellm_logging_obj", None) | |
### TIMEOUT LOGIC ### | |
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600 | |
litellm_params = get_litellm_params( | |
custom_llm_provider=custom_llm_provider, | |
**kwargs, | |
) | |
litellm_logging_obj.update_environment_variables( | |
model=None, | |
user=None, | |
optional_params=optional_params.model_dump(), | |
litellm_params=litellm_params, | |
custom_llm_provider=custom_llm_provider, | |
) | |
if ( | |
timeout is not None | |
and isinstance(timeout, httpx.Timeout) | |
and supports_httpx_timeout(custom_llm_provider) is False | |
): | |
read_timeout = timeout.read or 600 | |
timeout = read_timeout # default 10 min timeout | |
elif timeout is not None and not isinstance(timeout, httpx.Timeout): | |
timeout = float(timeout) # type: ignore | |
elif timeout is None: | |
timeout = 600.0 | |
_retrieve_batch_request = RetrieveBatchRequest( | |
batch_id=batch_id, | |
extra_headers=extra_headers, | |
extra_body=extra_body, | |
) | |
_is_async = kwargs.pop("aretrieve_batch", False) is True | |
api_base: Optional[str] = None | |
if custom_llm_provider == "openai": | |
# for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there | |
api_base = ( | |
optional_params.api_base | |
or litellm.api_base | |
or os.getenv("OPENAI_BASE_URL") | |
or os.getenv("OPENAI_API_BASE") | |
or "https://api.openai.com/v1" | |
) | |
organization = ( | |
optional_params.organization | |
or litellm.organization | |
or os.getenv("OPENAI_ORGANIZATION", None) | |
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105 | |
) | |
# set API KEY | |
api_key = ( | |
optional_params.api_key | |
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there | |
or litellm.openai_key | |
or os.getenv("OPENAI_API_KEY") | |
) | |
response = openai_batches_instance.retrieve_batch( | |
_is_async=_is_async, | |
retrieve_batch_data=_retrieve_batch_request, | |
api_base=api_base, | |
api_key=api_key, | |
organization=organization, | |
timeout=timeout, | |
max_retries=optional_params.max_retries, | |
) | |
elif custom_llm_provider == "azure": | |
api_base = ( | |
optional_params.api_base | |
or litellm.api_base | |
or get_secret_str("AZURE_API_BASE") | |
) | |
api_version = ( | |
optional_params.api_version | |
or litellm.api_version | |
or get_secret_str("AZURE_API_VERSION") | |
) | |
api_key = ( | |
optional_params.api_key | |
or litellm.api_key | |
or litellm.azure_key | |
or get_secret_str("AZURE_OPENAI_API_KEY") | |
or get_secret_str("AZURE_API_KEY") | |
) | |
extra_body = optional_params.get("extra_body", {}) | |
if extra_body is not None: | |
extra_body.pop("azure_ad_token", None) | |
else: | |
get_secret_str("AZURE_AD_TOKEN") # type: ignore | |
response = azure_batches_instance.retrieve_batch( | |
_is_async=_is_async, | |
api_base=api_base, | |
api_key=api_key, | |
api_version=api_version, | |
timeout=timeout, | |
max_retries=optional_params.max_retries, | |
retrieve_batch_data=_retrieve_batch_request, | |
litellm_params=litellm_params, | |
) | |
elif custom_llm_provider == "vertex_ai": | |
api_base = optional_params.api_base or "" | |
vertex_ai_project = ( | |
optional_params.vertex_project | |
or litellm.vertex_project | |
or get_secret_str("VERTEXAI_PROJECT") | |
) | |
vertex_ai_location = ( | |
optional_params.vertex_location | |
or litellm.vertex_location | |
or get_secret_str("VERTEXAI_LOCATION") | |
) | |
vertex_credentials = optional_params.vertex_credentials or get_secret_str( | |
"VERTEXAI_CREDENTIALS" | |
) | |
response = vertex_ai_batches_instance.retrieve_batch( | |
_is_async=_is_async, | |
batch_id=batch_id, | |
api_base=api_base, | |
vertex_project=vertex_ai_project, | |
vertex_location=vertex_ai_location, | |
vertex_credentials=vertex_credentials, | |
timeout=timeout, | |
max_retries=optional_params.max_retries, | |
) | |
else: | |
raise litellm.exceptions.BadRequestError( | |
message="LiteLLM doesn't support {} for 'create_batch'. Only 'openai' is supported.".format( | |
custom_llm_provider | |
), | |
model="n/a", | |
llm_provider=custom_llm_provider, | |
response=httpx.Response( | |
status_code=400, | |
content="Unsupported provider", | |
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore | |
), | |
) | |
return response | |
except Exception as e: | |
raise e | |
async def alist_batches( | |
after: Optional[str] = None, | |
limit: Optional[int] = None, | |
custom_llm_provider: Literal["openai", "azure"] = "openai", | |
metadata: Optional[Dict[str, str]] = None, | |
extra_headers: Optional[Dict[str, str]] = None, | |
extra_body: Optional[Dict[str, str]] = None, | |
**kwargs, | |
): | |
""" | |
Async: List your organization's batches. | |
""" | |
try: | |
loop = asyncio.get_event_loop() | |
kwargs["alist_batches"] = True | |
# Use a partial function to pass your keyword arguments | |
func = partial( | |
list_batches, | |
after, | |
limit, | |
custom_llm_provider, | |
extra_headers, | |
extra_body, | |
**kwargs, | |
) | |
# Add the context to the function | |
ctx = contextvars.copy_context() | |
func_with_context = partial(ctx.run, func) | |
init_response = await loop.run_in_executor(None, func_with_context) | |
if asyncio.iscoroutine(init_response): | |
response = await init_response | |
else: | |
response = init_response # type: ignore | |
return response | |
except Exception as e: | |
raise e | |
def list_batches( | |
after: Optional[str] = None, | |
limit: Optional[int] = None, | |
custom_llm_provider: Literal["openai", "azure"] = "openai", | |
extra_headers: Optional[Dict[str, str]] = None, | |
extra_body: Optional[Dict[str, str]] = None, | |
**kwargs, | |
): | |
""" | |
Lists batches | |
List your organization's batches. | |
""" | |
try: | |
# set API KEY | |
optional_params = GenericLiteLLMParams(**kwargs) | |
litellm_params = get_litellm_params( | |
custom_llm_provider=custom_llm_provider, | |
**kwargs, | |
) | |
api_key = ( | |
optional_params.api_key | |
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there | |
or litellm.openai_key | |
or os.getenv("OPENAI_API_KEY") | |
) | |
### TIMEOUT LOGIC ### | |
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600 | |
# set timeout for 10 minutes by default | |
if ( | |
timeout is not None | |
and isinstance(timeout, httpx.Timeout) | |
and supports_httpx_timeout(custom_llm_provider) is False | |
): | |
read_timeout = timeout.read or 600 | |
timeout = read_timeout # default 10 min timeout | |
elif timeout is not None and not isinstance(timeout, httpx.Timeout): | |
timeout = float(timeout) # type: ignore | |
elif timeout is None: | |
timeout = 600.0 | |
_is_async = kwargs.pop("alist_batches", False) is True | |
if custom_llm_provider == "openai": | |
# for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there | |
api_base = ( | |
optional_params.api_base | |
or litellm.api_base | |
or os.getenv("OPENAI_BASE_URL") | |
or os.getenv("OPENAI_API_BASE") | |
or "https://api.openai.com/v1" | |
) | |
organization = ( | |
optional_params.organization | |
or litellm.organization | |
or os.getenv("OPENAI_ORGANIZATION", None) | |
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105 | |
) | |
response = openai_batches_instance.list_batches( | |
_is_async=_is_async, | |
after=after, | |
limit=limit, | |
api_base=api_base, | |
api_key=api_key, | |
organization=organization, | |
timeout=timeout, | |
max_retries=optional_params.max_retries, | |
) | |
elif custom_llm_provider == "azure": | |
api_base = optional_params.api_base or litellm.api_base or get_secret_str("AZURE_API_BASE") # type: ignore | |
api_version = ( | |
optional_params.api_version | |
or litellm.api_version | |
or get_secret_str("AZURE_API_VERSION") | |
) | |
api_key = ( | |
optional_params.api_key | |
or litellm.api_key | |
or litellm.azure_key | |
or get_secret_str("AZURE_OPENAI_API_KEY") | |
or get_secret_str("AZURE_API_KEY") | |
) | |
extra_body = optional_params.get("extra_body", {}) | |
if extra_body is not None: | |
extra_body.pop("azure_ad_token", None) | |
else: | |
get_secret_str("AZURE_AD_TOKEN") # type: ignore | |
response = azure_batches_instance.list_batches( | |
_is_async=_is_async, | |
api_base=api_base, | |
api_key=api_key, | |
api_version=api_version, | |
timeout=timeout, | |
max_retries=optional_params.max_retries, | |
litellm_params=litellm_params, | |
) | |
else: | |
raise litellm.exceptions.BadRequestError( | |
message="LiteLLM doesn't support {} for 'list_batch'. Only 'openai' is supported.".format( | |
custom_llm_provider | |
), | |
model="n/a", | |
llm_provider=custom_llm_provider, | |
response=httpx.Response( | |
status_code=400, | |
content="Unsupported provider", | |
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore | |
), | |
) | |
return response | |
except Exception as e: | |
raise e | |
async def acancel_batch( | |
batch_id: str, | |
custom_llm_provider: Literal["openai", "azure"] = "openai", | |
metadata: Optional[Dict[str, str]] = None, | |
extra_headers: Optional[Dict[str, str]] = None, | |
extra_body: Optional[Dict[str, str]] = None, | |
**kwargs, | |
) -> Batch: | |
""" | |
Async: Cancels a batch. | |
LiteLLM Equivalent of POST https://api.openai.com/v1/batches/{batch_id}/cancel | |
""" | |
try: | |
loop = asyncio.get_event_loop() | |
kwargs["acancel_batch"] = True | |
# Use a partial function to pass your keyword arguments | |
func = partial( | |
cancel_batch, | |
batch_id, | |
custom_llm_provider, | |
metadata, | |
extra_headers, | |
extra_body, | |
**kwargs, | |
) | |
# Add the context to the function | |
ctx = contextvars.copy_context() | |
func_with_context = partial(ctx.run, func) | |
init_response = await loop.run_in_executor(None, func_with_context) | |
if asyncio.iscoroutine(init_response): | |
response = await init_response | |
else: | |
response = init_response | |
return response | |
except Exception as e: | |
raise e | |
def cancel_batch( | |
batch_id: str, | |
custom_llm_provider: Literal["openai", "azure"] = "openai", | |
metadata: Optional[Dict[str, str]] = None, | |
extra_headers: Optional[Dict[str, str]] = None, | |
extra_body: Optional[Dict[str, str]] = None, | |
**kwargs, | |
) -> Union[Batch, Coroutine[Any, Any, Batch]]: | |
""" | |
Cancels a batch. | |
LiteLLM Equivalent of POST https://api.openai.com/v1/batches/{batch_id}/cancel | |
""" | |
try: | |
optional_params = GenericLiteLLMParams(**kwargs) | |
litellm_params = get_litellm_params( | |
custom_llm_provider=custom_llm_provider, | |
**kwargs, | |
) | |
### TIMEOUT LOGIC ### | |
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600 | |
# set timeout for 10 minutes by default | |
if ( | |
timeout is not None | |
and isinstance(timeout, httpx.Timeout) | |
and supports_httpx_timeout(custom_llm_provider) is False | |
): | |
read_timeout = timeout.read or 600 | |
timeout = read_timeout # default 10 min timeout | |
elif timeout is not None and not isinstance(timeout, httpx.Timeout): | |
timeout = float(timeout) # type: ignore | |
elif timeout is None: | |
timeout = 600.0 | |
_cancel_batch_request = CancelBatchRequest( | |
batch_id=batch_id, | |
extra_headers=extra_headers, | |
extra_body=extra_body, | |
) | |
_is_async = kwargs.pop("acancel_batch", False) is True | |
api_base: Optional[str] = None | |
if custom_llm_provider == "openai": | |
api_base = ( | |
optional_params.api_base | |
or litellm.api_base | |
or os.getenv("OPENAI_BASE_URL") | |
or os.getenv("OPENAI_API_BASE") | |
or "https://api.openai.com/v1" | |
) | |
organization = ( | |
optional_params.organization | |
or litellm.organization | |
or os.getenv("OPENAI_ORGANIZATION", None) | |
or None | |
) | |
api_key = ( | |
optional_params.api_key | |
or litellm.api_key | |
or litellm.openai_key | |
or os.getenv("OPENAI_API_KEY") | |
) | |
response = openai_batches_instance.cancel_batch( | |
_is_async=_is_async, | |
cancel_batch_data=_cancel_batch_request, | |
api_base=api_base, | |
api_key=api_key, | |
organization=organization, | |
timeout=timeout, | |
max_retries=optional_params.max_retries, | |
) | |
elif custom_llm_provider == "azure": | |
api_base = ( | |
optional_params.api_base | |
or litellm.api_base | |
or get_secret_str("AZURE_API_BASE") | |
) | |
api_version = ( | |
optional_params.api_version | |
or litellm.api_version | |
or get_secret_str("AZURE_API_VERSION") | |
) | |
api_key = ( | |
optional_params.api_key | |
or litellm.api_key | |
or litellm.azure_key | |
or get_secret_str("AZURE_OPENAI_API_KEY") | |
or get_secret_str("AZURE_API_KEY") | |
) | |
extra_body = optional_params.get("extra_body", {}) | |
if extra_body is not None: | |
extra_body.pop("azure_ad_token", None) | |
else: | |
get_secret_str("AZURE_AD_TOKEN") # type: ignore | |
response = azure_batches_instance.cancel_batch( | |
_is_async=_is_async, | |
api_base=api_base, | |
api_key=api_key, | |
api_version=api_version, | |
timeout=timeout, | |
max_retries=optional_params.max_retries, | |
cancel_batch_data=_cancel_batch_request, | |
litellm_params=litellm_params, | |
) | |
else: | |
raise litellm.exceptions.BadRequestError( | |
message="LiteLLM doesn't support {} for 'cancel_batch'. Only 'openai' and 'azure' are supported.".format( | |
custom_llm_provider | |
), | |
model="n/a", | |
llm_provider=custom_llm_provider, | |
response=httpx.Response( | |
status_code=400, | |
content="Unsupported provider", | |
request=httpx.Request(method="cancel_batch", url="https://github.com/BerriAI/litellm"), # type: ignore | |
), | |
) | |
return response | |
except Exception as e: | |
raise e | |