Spaces:
Sleeping
Sleeping
from concurrent.futures import FIRST_COMPLETED, ThreadPoolExecutor, wait | |
from typing import List, Optional | |
import litellm | |
from litellm._logging import print_verbose | |
from litellm.utils import get_optional_params | |
from ..llms.vllm.completion import handler as vllm_handler | |
def batch_completion( | |
model: str, | |
# Optional OpenAI params: see https://platform.openai.com/docs/api-reference/chat/create | |
messages: List = [], | |
functions: Optional[List] = None, | |
function_call: Optional[str] = None, | |
temperature: Optional[float] = None, | |
top_p: Optional[float] = None, | |
n: Optional[int] = None, | |
stream: Optional[bool] = None, | |
stop=None, | |
max_tokens: Optional[int] = None, | |
presence_penalty: Optional[float] = None, | |
frequency_penalty: Optional[float] = None, | |
logit_bias: Optional[dict] = None, | |
user: Optional[str] = None, | |
deployment_id=None, | |
request_timeout: Optional[int] = None, | |
timeout: Optional[int] = 600, | |
max_workers: Optional[int] = 100, | |
# Optional liteLLM function params | |
**kwargs, | |
): | |
""" | |
Batch litellm.completion function for a given model. | |
Args: | |
model (str): The model to use for generating completions. | |
messages (List, optional): List of messages to use as input for generating completions. Defaults to []. | |
functions (List, optional): List of functions to use as input for generating completions. Defaults to []. | |
function_call (str, optional): The function call to use as input for generating completions. Defaults to "". | |
temperature (float, optional): The temperature parameter for generating completions. Defaults to None. | |
top_p (float, optional): The top-p parameter for generating completions. Defaults to None. | |
n (int, optional): The number of completions to generate. Defaults to None. | |
stream (bool, optional): Whether to stream completions or not. Defaults to None. | |
stop (optional): The stop parameter for generating completions. Defaults to None. | |
max_tokens (float, optional): The maximum number of tokens to generate. Defaults to None. | |
presence_penalty (float, optional): The presence penalty for generating completions. Defaults to None. | |
frequency_penalty (float, optional): The frequency penalty for generating completions. Defaults to None. | |
logit_bias (dict, optional): The logit bias for generating completions. Defaults to {}. | |
user (str, optional): The user string for generating completions. Defaults to "". | |
deployment_id (optional): The deployment ID for generating completions. Defaults to None. | |
request_timeout (int, optional): The request timeout for generating completions. Defaults to None. | |
max_workers (int,optional): The maximum number of threads to use for parallel processing. | |
Returns: | |
list: A list of completion results. | |
""" | |
args = locals() | |
batch_messages = messages | |
completions = [] | |
model = model | |
custom_llm_provider = None | |
if model.split("/", 1)[0] in litellm.provider_list: | |
custom_llm_provider = model.split("/", 1)[0] | |
model = model.split("/", 1)[1] | |
if custom_llm_provider == "vllm": | |
optional_params = get_optional_params( | |
functions=functions, | |
function_call=function_call, | |
temperature=temperature, | |
top_p=top_p, | |
n=n, | |
stream=stream or False, | |
stop=stop, | |
max_tokens=max_tokens, | |
presence_penalty=presence_penalty, | |
frequency_penalty=frequency_penalty, | |
logit_bias=logit_bias, | |
user=user, | |
# params to identify the model | |
model=model, | |
custom_llm_provider=custom_llm_provider, | |
) | |
results = vllm_handler.batch_completions( | |
model=model, | |
messages=batch_messages, | |
custom_prompt_dict=litellm.custom_prompt_dict, | |
optional_params=optional_params, | |
) | |
# all non VLLM models for batch completion models | |
else: | |
def chunks(lst, n): | |
"""Yield successive n-sized chunks from lst.""" | |
for i in range(0, len(lst), n): | |
yield lst[i : i + n] | |
with ThreadPoolExecutor(max_workers=max_workers) as executor: | |
for sub_batch in chunks(batch_messages, 100): | |
for message_list in sub_batch: | |
kwargs_modified = args.copy() | |
kwargs_modified.pop("max_workers") | |
kwargs_modified["messages"] = message_list | |
original_kwargs = {} | |
if "kwargs" in kwargs_modified: | |
original_kwargs = kwargs_modified.pop("kwargs") | |
future = executor.submit( | |
litellm.completion, **kwargs_modified, **original_kwargs | |
) | |
completions.append(future) | |
# Retrieve the results from the futures | |
# results = [future.result() for future in completions] | |
# return exceptions if any | |
results = [] | |
for future in completions: | |
try: | |
results.append(future.result()) | |
except Exception as exc: | |
results.append(exc) | |
return results | |
# send one request to multiple models | |
# return as soon as one of the llms responds | |
def batch_completion_models(*args, **kwargs): | |
""" | |
Send a request to multiple language models concurrently and return the response | |
as soon as one of the models responds. | |
Args: | |
*args: Variable-length positional arguments passed to the completion function. | |
**kwargs: Additional keyword arguments: | |
- models (str or list of str): The language models to send requests to. | |
- Other keyword arguments to be passed to the completion function. | |
Returns: | |
str or None: The response from one of the language models, or None if no response is received. | |
Note: | |
This function utilizes a ThreadPoolExecutor to parallelize requests to multiple models. | |
It sends requests concurrently and returns the response from the first model that responds. | |
""" | |
if "model" in kwargs: | |
kwargs.pop("model") | |
if "models" in kwargs: | |
models = kwargs["models"] | |
kwargs.pop("models") | |
futures = {} | |
with ThreadPoolExecutor(max_workers=len(models)) as executor: | |
for model in models: | |
futures[model] = executor.submit( | |
litellm.completion, *args, model=model, **kwargs | |
) | |
for model, future in sorted( | |
futures.items(), key=lambda x: models.index(x[0]) | |
): | |
if future.result() is not None: | |
return future.result() | |
elif "deployments" in kwargs: | |
deployments = kwargs["deployments"] | |
kwargs.pop("deployments") | |
kwargs.pop("model_list") | |
nested_kwargs = kwargs.pop("kwargs", {}) | |
futures = {} | |
with ThreadPoolExecutor(max_workers=len(deployments)) as executor: | |
for deployment in deployments: | |
for key in kwargs.keys(): | |
if ( | |
key not in deployment | |
): # don't override deployment values e.g. model name, api base, etc. | |
deployment[key] = kwargs[key] | |
kwargs = {**deployment, **nested_kwargs} | |
futures[deployment["model"]] = executor.submit( | |
litellm.completion, **kwargs | |
) | |
while futures: | |
# wait for the first returned future | |
print_verbose("\n\n waiting for next result\n\n") | |
done, _ = wait(futures.values(), return_when=FIRST_COMPLETED) | |
print_verbose(f"done list\n{done}") | |
for future in done: | |
try: | |
result = future.result() | |
return result | |
except Exception: | |
# if model 1 fails, continue with response from model 2, model3 | |
print_verbose( | |
"\n\ngot an exception, ignoring, removing from futures" | |
) | |
print_verbose(futures) | |
new_futures = {} | |
for key, value in futures.items(): | |
if future == value: | |
print_verbose(f"removing key{key}") | |
continue | |
else: | |
new_futures[key] = value | |
futures = new_futures | |
print_verbose(f"new futures{futures}") | |
continue | |
print_verbose("\n\ndone looping through futures\n\n") | |
print_verbose(futures) | |
return None # If no response is received from any model | |
def batch_completion_models_all_responses(*args, **kwargs): | |
""" | |
Send a request to multiple language models concurrently and return a list of responses | |
from all models that respond. | |
Args: | |
*args: Variable-length positional arguments passed to the completion function. | |
**kwargs: Additional keyword arguments: | |
- models (str or list of str): The language models to send requests to. | |
- Other keyword arguments to be passed to the completion function. | |
Returns: | |
list: A list of responses from the language models that responded. | |
Note: | |
This function utilizes a ThreadPoolExecutor to parallelize requests to multiple models. | |
It sends requests concurrently and collects responses from all models that respond. | |
""" | |
import concurrent.futures | |
# ANSI escape codes for colored output | |
if "model" in kwargs: | |
kwargs.pop("model") | |
if "models" in kwargs: | |
models = kwargs["models"] | |
kwargs.pop("models") | |
else: | |
raise Exception("'models' param not in kwargs") | |
responses = [] | |
with concurrent.futures.ThreadPoolExecutor(max_workers=len(models)) as executor: | |
for idx, model in enumerate(models): | |
future = executor.submit(litellm.completion, *args, model=model, **kwargs) | |
if future.result() is not None: | |
responses.append(future.result()) | |
return responses | |