Spaces:
Sleeping
Sleeping
# What is this? | |
## This hook is used to check for LiteLLM managed files in the request body, and replace them with model-specific file id | |
import base64 | |
import json | |
import uuid | |
from abc import ABC, abstractmethod | |
from typing import TYPE_CHECKING, Any, Dict, List, Literal, Optional, Union, cast | |
from litellm import Router, verbose_logger | |
from litellm.caching.caching import DualCache | |
from litellm.integrations.custom_logger import CustomLogger | |
from litellm.litellm_core_utils.prompt_templates.common_utils import extract_file_data | |
from litellm.proxy._types import CallTypes, LiteLLM_ManagedFileTable, UserAPIKeyAuth | |
from litellm.types.llms.openai import ( | |
AllMessageValues, | |
ChatCompletionFileObject, | |
CreateFileRequest, | |
OpenAIFileObject, | |
OpenAIFilesPurpose, | |
) | |
from litellm.types.utils import SpecialEnums | |
if TYPE_CHECKING: | |
from opentelemetry.trace import Span as _Span | |
from litellm.proxy.utils import InternalUsageCache as _InternalUsageCache | |
from litellm.proxy.utils import PrismaClient as _PrismaClient | |
Span = Union[_Span, Any] | |
InternalUsageCache = _InternalUsageCache | |
PrismaClient = _PrismaClient | |
else: | |
Span = Any | |
InternalUsageCache = Any | |
PrismaClient = Any | |
class BaseFileEndpoints(ABC): | |
async def afile_retrieve( | |
self, | |
file_id: str, | |
litellm_parent_otel_span: Optional[Span], | |
) -> OpenAIFileObject: | |
pass | |
async def afile_list( | |
self, custom_llm_provider: str, **data: dict | |
) -> List[OpenAIFileObject]: | |
pass | |
async def afile_delete( | |
self, custom_llm_provider: str, file_id: str, **data: dict | |
) -> OpenAIFileObject: | |
pass | |
class _PROXY_LiteLLMManagedFiles(CustomLogger): | |
# Class variables or attributes | |
def __init__( | |
self, internal_usage_cache: InternalUsageCache, prisma_client: PrismaClient | |
): | |
self.internal_usage_cache = internal_usage_cache | |
self.prisma_client = prisma_client | |
async def store_unified_file_id( | |
self, | |
file_id: str, | |
file_object: OpenAIFileObject, | |
litellm_parent_otel_span: Optional[Span], | |
model_mappings: Dict[str, str], | |
) -> None: | |
verbose_logger.info( | |
f"Storing LiteLLM Managed File object with id={file_id} in cache" | |
) | |
litellm_managed_file_object = LiteLLM_ManagedFileTable( | |
unified_file_id=file_id, | |
file_object=file_object, | |
model_mappings=model_mappings, | |
) | |
await self.internal_usage_cache.async_set_cache( | |
key=file_id, | |
value=litellm_managed_file_object.model_dump(), | |
litellm_parent_otel_span=litellm_parent_otel_span, | |
) | |
await self.prisma_client.db.litellm_managedfiletable.create( | |
data={ | |
"unified_file_id": file_id, | |
"file_object": file_object.model_dump_json(), | |
"model_mappings": json.dumps(model_mappings), | |
} | |
) | |
async def get_unified_file_id( | |
self, file_id: str, litellm_parent_otel_span: Optional[Span] = None | |
) -> Optional[LiteLLM_ManagedFileTable]: | |
## CHECK CACHE | |
result = cast( | |
Optional[dict], | |
await self.internal_usage_cache.async_get_cache( | |
key=file_id, | |
litellm_parent_otel_span=litellm_parent_otel_span, | |
), | |
) | |
if result: | |
return LiteLLM_ManagedFileTable(**result) | |
## CHECK DB | |
db_object = await self.prisma_client.db.litellm_managedfiletable.find_first( | |
where={"unified_file_id": file_id} | |
) | |
if db_object: | |
return LiteLLM_ManagedFileTable(**db_object.model_dump()) | |
return None | |
async def delete_unified_file_id( | |
self, file_id: str, litellm_parent_otel_span: Optional[Span] = None | |
) -> OpenAIFileObject: | |
## get old value | |
initial_value = await self.prisma_client.db.litellm_managedfiletable.find_first( | |
where={"unified_file_id": file_id} | |
) | |
if initial_value is None: | |
raise Exception(f"LiteLLM Managed File object with id={file_id} not found") | |
## delete old value | |
await self.internal_usage_cache.async_set_cache( | |
key=file_id, | |
value=None, | |
litellm_parent_otel_span=litellm_parent_otel_span, | |
) | |
await self.prisma_client.db.litellm_managedfiletable.delete( | |
where={"unified_file_id": file_id} | |
) | |
return initial_value.file_object | |
async def async_pre_call_hook( | |
self, | |
user_api_key_dict: UserAPIKeyAuth, | |
cache: DualCache, | |
data: Dict, | |
call_type: Literal[ | |
"completion", | |
"text_completion", | |
"embeddings", | |
"image_generation", | |
"moderation", | |
"audio_transcription", | |
"pass_through_endpoint", | |
"rerank", | |
], | |
) -> Union[Exception, str, Dict, None]: | |
""" | |
- Detect litellm_proxy/ file_id | |
- add dictionary of mappings of litellm_proxy/ file_id -> provider_file_id => {litellm_proxy/file_id: {"model_id": id, "file_id": provider_file_id}} | |
""" | |
if call_type == CallTypes.completion.value: | |
messages = data.get("messages") | |
if messages: | |
file_ids = self.get_file_ids_from_messages(messages) | |
if file_ids: | |
model_file_id_mapping = await self.get_model_file_id_mapping( | |
file_ids, user_api_key_dict.parent_otel_span | |
) | |
data["model_file_id_mapping"] = model_file_id_mapping | |
return data | |
def get_file_ids_from_messages(self, messages: List[AllMessageValues]) -> List[str]: | |
""" | |
Gets file ids from messages | |
""" | |
file_ids = [] | |
for message in messages: | |
if message.get("role") == "user": | |
content = message.get("content") | |
if content: | |
if isinstance(content, str): | |
continue | |
for c in content: | |
if c["type"] == "file": | |
file_object = cast(ChatCompletionFileObject, c) | |
file_object_file_field = file_object["file"] | |
file_id = file_object_file_field.get("file_id") | |
if file_id: | |
file_ids.append(file_id) | |
return file_ids | |
def _convert_b64_uid_to_unified_uid(b64_uid: str) -> str: | |
is_base64_unified_file_id = ( | |
_PROXY_LiteLLMManagedFiles._is_base64_encoded_unified_file_id(b64_uid) | |
) | |
if is_base64_unified_file_id: | |
return is_base64_unified_file_id | |
else: | |
return b64_uid | |
def _is_base64_encoded_unified_file_id(b64_uid: str) -> Union[str, Literal[False]]: | |
# Add padding back if needed | |
padded = b64_uid + "=" * (-len(b64_uid) % 4) | |
# Decode from base64 | |
try: | |
decoded = base64.urlsafe_b64decode(padded).decode() | |
if decoded.startswith(SpecialEnums.LITELM_MANAGED_FILE_ID_PREFIX.value): | |
return decoded | |
else: | |
return False | |
except Exception: | |
return False | |
def convert_b64_uid_to_unified_uid(self, b64_uid: str) -> str: | |
is_base64_unified_file_id = self._is_base64_encoded_unified_file_id(b64_uid) | |
if is_base64_unified_file_id: | |
return is_base64_unified_file_id | |
else: | |
return b64_uid | |
async def get_model_file_id_mapping( | |
self, file_ids: List[str], litellm_parent_otel_span: Span | |
) -> dict: | |
""" | |
Get model-specific file IDs for a list of proxy file IDs. | |
Returns a dictionary mapping litellm_proxy/ file_id -> model_id -> model_file_id | |
1. Get all the litellm_proxy/ file_ids from the messages | |
2. For each file_id, search for cache keys matching the pattern file_id:* | |
3. Return a dictionary of mappings of litellm_proxy/ file_id -> model_id -> model_file_id | |
Example: | |
{ | |
"litellm_proxy/file_id": { | |
"model_id": "model_file_id" | |
} | |
} | |
""" | |
file_id_mapping: Dict[str, Dict[str, str]] = {} | |
litellm_managed_file_ids = [] | |
for file_id in file_ids: | |
## CHECK IF FILE ID IS MANAGED BY LITELM | |
is_base64_unified_file_id = self._is_base64_encoded_unified_file_id(file_id) | |
if is_base64_unified_file_id: | |
litellm_managed_file_ids.append(file_id) | |
if litellm_managed_file_ids: | |
# Get all cache keys matching the pattern file_id:* | |
for file_id in litellm_managed_file_ids: | |
# Search for any cache key starting with this file_id | |
unified_file_object = await self.get_unified_file_id( | |
file_id, litellm_parent_otel_span | |
) | |
if unified_file_object: | |
file_id_mapping[file_id] = unified_file_object.model_mappings | |
return file_id_mapping | |
async def create_file_for_each_model( | |
self, | |
llm_router: Optional[Router], | |
_create_file_request: CreateFileRequest, | |
target_model_names_list: List[str], | |
litellm_parent_otel_span: Span, | |
) -> List[OpenAIFileObject]: | |
if llm_router is None: | |
raise Exception("LLM Router not initialized. Ensure models added to proxy.") | |
responses = [] | |
for model in target_model_names_list: | |
individual_response = await llm_router.acreate_file( | |
model=model, **_create_file_request | |
) | |
responses.append(individual_response) | |
return responses | |
async def acreate_file( | |
self, | |
create_file_request: CreateFileRequest, | |
llm_router: Router, | |
target_model_names_list: List[str], | |
litellm_parent_otel_span: Span, | |
) -> OpenAIFileObject: | |
responses = await self.create_file_for_each_model( | |
llm_router=llm_router, | |
_create_file_request=create_file_request, | |
target_model_names_list=target_model_names_list, | |
litellm_parent_otel_span=litellm_parent_otel_span, | |
) | |
response = await _PROXY_LiteLLMManagedFiles.return_unified_file_id( | |
file_objects=responses, | |
create_file_request=create_file_request, | |
internal_usage_cache=self.internal_usage_cache, | |
litellm_parent_otel_span=litellm_parent_otel_span, | |
) | |
## STORE MODEL MAPPINGS IN DB | |
model_mappings: Dict[str, str] = {} | |
for file_object in responses: | |
model_id = file_object._hidden_params.get("model_id") | |
if model_id is None: | |
verbose_logger.warning( | |
f"Skipping file_object: {file_object} because model_id in hidden_params={file_object._hidden_params} is None" | |
) | |
continue | |
file_id = file_object.id | |
model_mappings[model_id] = file_id | |
await self.store_unified_file_id( | |
file_id=response.id, | |
file_object=response, | |
litellm_parent_otel_span=litellm_parent_otel_span, | |
model_mappings=model_mappings, | |
) | |
return response | |
async def return_unified_file_id( | |
file_objects: List[OpenAIFileObject], | |
create_file_request: CreateFileRequest, | |
internal_usage_cache: InternalUsageCache, | |
litellm_parent_otel_span: Span, | |
) -> OpenAIFileObject: | |
## GET THE FILE TYPE FROM THE CREATE FILE REQUEST | |
file_data = extract_file_data(create_file_request["file"]) | |
file_type = file_data["content_type"] | |
unified_file_id = SpecialEnums.LITELLM_MANAGED_FILE_COMPLETE_STR.value.format( | |
file_type, str(uuid.uuid4()) | |
) | |
# Convert to URL-safe base64 and strip padding | |
base64_unified_file_id = ( | |
base64.urlsafe_b64encode(unified_file_id.encode()).decode().rstrip("=") | |
) | |
## CREATE RESPONSE OBJECT | |
response = OpenAIFileObject( | |
id=base64_unified_file_id, | |
object="file", | |
purpose=create_file_request["purpose"], | |
created_at=file_objects[0].created_at, | |
bytes=file_objects[0].bytes, | |
filename=file_objects[0].filename, | |
status="uploaded", | |
) | |
return response | |
async def afile_retrieve( | |
self, file_id: str, litellm_parent_otel_span: Optional[Span] | |
) -> OpenAIFileObject: | |
stored_file_object = await self.get_unified_file_id( | |
file_id, litellm_parent_otel_span | |
) | |
if stored_file_object: | |
return stored_file_object.file_object | |
else: | |
raise Exception(f"LiteLLM Managed File object with id={file_id} not found") | |
async def afile_list( | |
self, | |
purpose: Optional[OpenAIFilesPurpose], | |
litellm_parent_otel_span: Optional[Span], | |
**data: Dict, | |
) -> List[OpenAIFileObject]: | |
return [] | |
async def afile_delete( | |
self, | |
file_id: str, | |
litellm_parent_otel_span: Optional[Span], | |
llm_router: Router, | |
**data: Dict, | |
) -> OpenAIFileObject: | |
file_id = self.convert_b64_uid_to_unified_uid(file_id) | |
model_file_id_mapping = await self.get_model_file_id_mapping( | |
[file_id], litellm_parent_otel_span | |
) | |
specific_model_file_id_mapping = model_file_id_mapping.get(file_id) | |
if specific_model_file_id_mapping: | |
for model_id, file_id in specific_model_file_id_mapping.items(): | |
await llm_router.afile_delete(model=model_id, file_id=file_id, **data) # type: ignore | |
stored_file_object = await self.delete_unified_file_id( | |
file_id, litellm_parent_otel_span | |
) | |
if stored_file_object: | |
return stored_file_object | |
else: | |
raise Exception(f"LiteLLM Managed File object with id={file_id} not found") | |
async def afile_content( | |
self, | |
file_id: str, | |
litellm_parent_otel_span: Optional[Span], | |
llm_router: Router, | |
**data: Dict, | |
) -> str: | |
""" | |
Get the content of a file from first model that has it | |
""" | |
model_file_id_mapping = await self.get_model_file_id_mapping( | |
[file_id], litellm_parent_otel_span | |
) | |
specific_model_file_id_mapping = model_file_id_mapping.get(file_id) | |
if specific_model_file_id_mapping: | |
exception_dict = {} | |
for model_id, file_id in specific_model_file_id_mapping.items(): | |
try: | |
return await llm_router.afile_content(model=model_id, file_id=file_id, **data) # type: ignore | |
except Exception as e: | |
exception_dict[model_id] = str(e) | |
raise Exception( | |
f"LiteLLM Managed File object with id={file_id} not found. Checked model id's: {specific_model_file_id_mapping.keys()}. Errors: {exception_dict}" | |
) | |
else: | |
raise Exception(f"LiteLLM Managed File object with id={file_id} not found") | |