Spaces:
Sleeping
Sleeping
""" | |
Helper util for handling openai-specific cost calculation | |
- e.g.: prompt caching | |
""" | |
from typing import Literal, Optional, Tuple | |
from litellm._logging import verbose_logger | |
from litellm.litellm_core_utils.llm_cost_calc.utils import generic_cost_per_token | |
from litellm.types.utils import CallTypes, Usage | |
from litellm.utils import get_model_info | |
def cost_router(call_type: CallTypes) -> Literal["cost_per_token", "cost_per_second"]: | |
if call_type == CallTypes.atranscription or call_type == CallTypes.transcription: | |
return "cost_per_second" | |
else: | |
return "cost_per_token" | |
def cost_per_token(model: str, usage: Usage) -> Tuple[float, float]: | |
""" | |
Calculates the cost per token for a given model, prompt tokens, and completion tokens. | |
Input: | |
- model: str, the model name without provider prefix | |
- usage: LiteLLM Usage block, containing anthropic caching information | |
Returns: | |
Tuple[float, float] - prompt_cost_in_usd, completion_cost_in_usd | |
""" | |
## CALCULATE INPUT COST | |
return generic_cost_per_token( | |
model=model, usage=usage, custom_llm_provider="openai" | |
) | |
# ### Non-cached text tokens | |
# non_cached_text_tokens = usage.prompt_tokens | |
# cached_tokens: Optional[int] = None | |
# if usage.prompt_tokens_details and usage.prompt_tokens_details.cached_tokens: | |
# cached_tokens = usage.prompt_tokens_details.cached_tokens | |
# non_cached_text_tokens = non_cached_text_tokens - cached_tokens | |
# prompt_cost: float = non_cached_text_tokens * model_info["input_cost_per_token"] | |
# ## Prompt Caching cost calculation | |
# if model_info.get("cache_read_input_token_cost") is not None and cached_tokens: | |
# # Note: We read ._cache_read_input_tokens from the Usage - since cost_calculator.py standardizes the cache read tokens on usage._cache_read_input_tokens | |
# prompt_cost += cached_tokens * ( | |
# model_info.get("cache_read_input_token_cost", 0) or 0 | |
# ) | |
# _audio_tokens: Optional[int] = ( | |
# usage.prompt_tokens_details.audio_tokens | |
# if usage.prompt_tokens_details is not None | |
# else None | |
# ) | |
# _audio_cost_per_token: Optional[float] = model_info.get( | |
# "input_cost_per_audio_token" | |
# ) | |
# if _audio_tokens is not None and _audio_cost_per_token is not None: | |
# audio_cost: float = _audio_tokens * _audio_cost_per_token | |
# prompt_cost += audio_cost | |
# ## CALCULATE OUTPUT COST | |
# completion_cost: float = ( | |
# usage["completion_tokens"] * model_info["output_cost_per_token"] | |
# ) | |
# _output_cost_per_audio_token: Optional[float] = model_info.get( | |
# "output_cost_per_audio_token" | |
# ) | |
# _output_audio_tokens: Optional[int] = ( | |
# usage.completion_tokens_details.audio_tokens | |
# if usage.completion_tokens_details is not None | |
# else None | |
# ) | |
# if _output_cost_per_audio_token is not None and _output_audio_tokens is not None: | |
# audio_cost = _output_audio_tokens * _output_cost_per_audio_token | |
# completion_cost += audio_cost | |
# return prompt_cost, completion_cost | |
def cost_per_second( | |
model: str, custom_llm_provider: Optional[str], duration: float = 0.0 | |
) -> Tuple[float, float]: | |
""" | |
Calculates the cost per second for a given model, prompt tokens, and completion tokens. | |
Input: | |
- model: str, the model name without provider prefix | |
- custom_llm_provider: str, the custom llm provider | |
- duration: float, the duration of the response in seconds | |
Returns: | |
Tuple[float, float] - prompt_cost_in_usd, completion_cost_in_usd | |
""" | |
## GET MODEL INFO | |
model_info = get_model_info( | |
model=model, custom_llm_provider=custom_llm_provider or "openai" | |
) | |
prompt_cost = 0.0 | |
completion_cost = 0.0 | |
## Speech / Audio cost calculation | |
if ( | |
"output_cost_per_second" in model_info | |
and model_info["output_cost_per_second"] is not None | |
): | |
verbose_logger.debug( | |
f"For model={model} - output_cost_per_second: {model_info.get('output_cost_per_second')}; duration: {duration}" | |
) | |
## COST PER SECOND ## | |
completion_cost = model_info["output_cost_per_second"] * duration | |
elif ( | |
"input_cost_per_second" in model_info | |
and model_info["input_cost_per_second"] is not None | |
): | |
verbose_logger.debug( | |
f"For model={model} - input_cost_per_second: {model_info.get('input_cost_per_second')}; duration: {duration}" | |
) | |
## COST PER SECOND ## | |
prompt_cost = model_info["input_cost_per_second"] * duration | |
completion_cost = 0.0 | |
return prompt_cost, completion_cost | |