Spaces:
Sleeping
Sleeping
# utils/causal_algorithms.py | |
import networkx as nx | |
import pandas as pd | |
import numpy as np | |
from causallearn.search.ConstraintBased.PC import pc | |
# from causallearn.search.ScoreBased.GES import ges # Example import for GES | |
# from notears import notears_linear # Example import for NOTEARS | |
class CausalDiscoveryAlgorithms: | |
def pc_algorithm(self, df, alpha=0.05): | |
""" | |
Run PC algorithm to learn causal graph. | |
Returns a directed graph's adjacency matrix. | |
Requires numerical data. | |
""" | |
data_array = df.to_numpy() | |
cg = pc(data_array, alpha=alpha, indep_test="fisherz") | |
adj_matrix = cg.G.graph | |
return adj_matrix | |
def ges_algorithm(self, df): | |
""" | |
Placeholder for GES (Greedy Equivalence Search) algorithm. | |
Returns a directed graph's adjacency matrix. | |
You would implement or integrate the GES algorithm here. | |
""" | |
# Example: G, edges = ges(data_array) | |
# For now, returning a simplified correlation-based graph for demonstration | |
print("GES algorithm is a placeholder. Using a simplified correlation-based graph.") | |
G = nx.DiGraph() | |
nodes = df.columns | |
G.add_nodes_from(nodes) | |
corr_matrix = df.corr().abs() | |
threshold = 0.3 | |
for i, col1 in enumerate(nodes): | |
for col2 in nodes[i+1:]: | |
if corr_matrix.loc[col1, col2] > threshold: | |
if np.random.rand() > 0.5: | |
G.add_edge(col1, col2) | |
else: | |
G.add_edge(col2, col1) | |
return nx.to_numpy_array(G) # Convert to adjacency matrix | |
def notears_algorithm(self, df): | |
""" | |
Placeholder for NOTEARS algorithm. | |
Returns a directed graph's adjacency matrix. | |
You would implement or integrate the NOTEARS algorithm here. | |
""" | |
# Example: W_est = notears_linear(data_array) | |
print("NOTEARS algorithm is a placeholder. Using a simplified correlation-based graph.") | |
G = nx.DiGraph() | |
nodes = df.columns | |
G.add_nodes_from(nodes) | |
corr_matrix = df.corr().abs() | |
threshold = 0.3 | |
for i, col1 in enumerate(nodes): | |
for col2 in nodes[i+1:]: | |
if corr_matrix.loc[col1, col2] > threshold: | |
if np.random.rand() > 0.5: | |
G.add_edge(col1, col2) | |
else: | |
G.add_edge(col2, col1) | |
return nx.to_numpy_array(G) # Convert to adjacency matrix |