Spaces:
Sleeping
Sleeping
# routers/intervene_routes.py | |
from flask import Blueprint, request, jsonify | |
import pandas as pd | |
from utils.do_calculus import DoCalculus # Will be used for more advanced intervention | |
import networkx as nx # Assuming graph is passed or re-discovered | |
import logging | |
intervene_bp = Blueprint('intervene', __name__) | |
logger = logging.getLogger(__name__) | |
def perform_intervention(): | |
""" | |
Perform causal intervention on data. | |
Expects 'data' (list of dicts), 'intervention_var' (column name), | |
'intervention_value' (numeric), and optionally 'graph' (adjacency matrix). | |
Returns intervened data as list of dicts. | |
""" | |
try: | |
payload = request.json | |
if not payload or 'data' not in payload or 'intervention_var' not in payload or 'intervention_value' not in payload: | |
return jsonify({"detail": "Missing required intervention parameters."}), 400 | |
df = pd.DataFrame(payload["data"]) | |
intervention_var = payload["intervention_var"] | |
intervention_value = payload["intervention_value"] | |
graph_adj_matrix = payload.get("graph") # Optional: pass pre-discovered graph | |
logger.info(f"Intervention request: var={intervention_var}, value={intervention_value}, data shape: {df.shape}") | |
if intervention_var not in df.columns: | |
return jsonify({"detail": f"Intervention variable '{intervention_var}' not found in data"}), 400 | |
# For a more advanced do-calculus, you'd need the graph structure. | |
# Here, a simplified direct intervention is applied first. | |
# If graph_adj_matrix is provided, you could convert it to networkx. | |
# For full do-calculus, the DoCalculus class would need a proper graph. | |
df_intervened = df.copy() | |
df_intervened[intervention_var] = intervention_value | |
# Placeholder for propagating effects using a graph if provided | |
# if graph_adj_matrix: | |
# graph_nx = nx.from_numpy_array(np.array(graph_adj_matrix), create_using=nx.DiGraph) | |
# do_calculus_engine = DoCalculus(graph_nx) | |
# df_intervened = do_calculus_engine.intervene(df_intervened, intervention_var, intervention_value) | |
# logger.info("Propagated effects using do-calculus (simplified).") | |
logger.info(f"Intervened data shape: {df_intervened.shape}") | |
return jsonify({"intervened_data": df_intervened.to_dict(orient="records")}) | |
except Exception as e: | |
logger.exception(f"Error in intervention: {str(e)}") | |
return jsonify({"detail": f"Intervention failed: {str(e)}"}), 500 |