Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from diffusers.image_processor import VaeImageProcessor | |
from torch.nn import functional as F | |
import cv2 | |
import utils | |
from rife.pytorch_msssim import ssim_matlab | |
import numpy as np | |
import logging | |
import skvideo.io | |
from rife.RIFE_HDv3 import Model | |
from huggingface_hub import hf_hub_download, snapshot_download | |
logger = logging.getLogger(__name__) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
def pad_image(img, scale): | |
_, _, h, w = img.shape | |
tmp = max(32, int(32 / scale)) | |
ph = ((h - 1) // tmp + 1) * tmp | |
pw = ((w - 1) // tmp + 1) * tmp | |
padding = (0, pw - w, 0, ph - h) | |
return F.pad(img, padding), padding | |
def make_inference(model, I0, I1, upscale_amount, n): | |
middle = model.inference(I0, I1, upscale_amount) | |
if n == 1: | |
return [middle] | |
first_half = make_inference(model, I0, middle, upscale_amount, n=n // 2) | |
second_half = make_inference(model, middle, I1, upscale_amount, n=n // 2) | |
if n % 2: | |
return [*first_half, middle, *second_half] | |
else: | |
return [*first_half, *second_half] | |
def ssim_interpolation_rife(model, samples, exp=1, upscale_amount=1, output_device="cpu"): | |
print(f"samples dtype:{samples.dtype}") | |
print(f"samples shape:{samples.shape}") | |
output = [] | |
pbar = utils.ProgressBar(samples.shape[0], desc="RIFE inference") | |
# [f, c, h, w] | |
for b in range(samples.shape[0]): | |
frame = samples[b : b + 1] | |
_, _, h, w = frame.shape | |
I0 = samples[b : b + 1] | |
I1 = samples[b + 1 : b + 2] if b + 2 < samples.shape[0] else samples[-1:] | |
I0, padding = pad_image(I0, upscale_amount) | |
I0 = I0.to(torch.float) | |
I1, _ = pad_image(I1, upscale_amount) | |
I1 = I1.to(torch.float) | |
# [c, h, w] | |
I0_small = F.interpolate(I0, (32, 32), mode="bilinear", align_corners=False) | |
I1_small = F.interpolate(I1, (32, 32), mode="bilinear", align_corners=False) | |
ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3]) | |
if ssim > 0.996: | |
I1 = samples[b : b + 1] | |
# print(f'upscale_amount:{upscale_amount}') | |
# print(f'ssim:{upscale_amount}') | |
# print(f'I0 shape:{I0.shape}') | |
# print(f'I1 shape:{I1.shape}') | |
I1, padding = pad_image(I1, upscale_amount) | |
# print(f'I0 shape:{I0.shape}') | |
# print(f'I1 shape:{I1.shape}') | |
I1 = make_inference(model, I0, I1, upscale_amount, 1) | |
# print(f'I0 shape:{I0.shape}') | |
# print(f'I1[0] shape:{I1[0].shape}') | |
I1 = I1[0] | |
# print(f'I1[0] unpadded shape:{I1.shape}') | |
I1_small = F.interpolate(I1, (32, 32), mode="bilinear", align_corners=False) | |
ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3]) | |
if padding[3] > 0 and padding[1] >0 : | |
frame = I1[:, :, : -padding[3],:-padding[1]] | |
elif padding[3] > 0: | |
frame = I1[:, :, : -padding[3],:] | |
elif padding[1] >0: | |
frame = I1[:, :, :,:-padding[1]] | |
else: | |
frame = I1 | |
tmp_output = [] | |
if ssim < 0.2: | |
for i in range((2**exp) - 1): | |
tmp_output.append(I0) | |
else: | |
tmp_output = make_inference(model, I0, I1, upscale_amount, 2**exp - 1) if exp else [] | |
frame, _ = pad_image(frame, upscale_amount) | |
# print(f'frame shape:{frame.shape}') | |
frame = F.interpolate(frame, size=(h, w)) | |
output.append(frame.to(output_device)) | |
for i, tmp_frame in enumerate(tmp_output): | |
# tmp_frame, _ = pad_image(tmp_frame, upscale_amount) | |
tmp_frame = F.interpolate(tmp_frame, size=(h, w)) | |
output.append(tmp_frame.to(output_device)) | |
pbar.update(1) | |
return output | |
def load_rife_model(model_path): | |
model = Model() | |
model.load_model(model_path, -1) | |
model.eval() | |
return model | |
# Create a generator that yields each frame, similar to cv2.VideoCapture | |
def frame_generator(video_capture): | |
while True: | |
ret, frame = video_capture.read() | |
if not ret: | |
break | |
yield frame | |
video_capture.release() | |
def rife_inference_with_path(model, video_path): | |
# Open the video file | |
video_capture = cv2.VideoCapture(video_path) | |
fps = video_capture.get(cv2.CAP_PROP_FPS) # Get the frames per second | |
tot_frame = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT)) # Total frames in the video | |
pt_frame_data = [] | |
pt_frame = skvideo.io.vreader(video_path) | |
# Cyclic reading of the video frames | |
while video_capture.isOpened(): | |
ret, frame = video_capture.read() | |
if not ret: | |
break | |
# BGR to RGB | |
frame_rgb = frame[..., ::-1] | |
frame_rgb = frame_rgb.copy() | |
tensor = torch.from_numpy(frame_rgb).float().to("cpu", non_blocking=True).float() / 255.0 | |
pt_frame_data.append( | |
tensor.permute(2, 0, 1) | |
) # to [c, h, w,] | |
pt_frame = torch.from_numpy(np.stack(pt_frame_data)) | |
pt_frame = pt_frame.to(device) | |
pbar = utils.ProgressBar(tot_frame, desc="RIFE inference") | |
frames = ssim_interpolation_rife(model, pt_frame) | |
pt_image = torch.stack([frames[i].squeeze(0) for i in range(len(frames))]) | |
image_np = VaeImageProcessor.pt_to_numpy(pt_image) # (to [49, 512, 480, 3]) | |
image_pil = VaeImageProcessor.numpy_to_pil(image_np) | |
video_path = utils.save_video(image_pil, fps=16) | |
if pbar: | |
pbar.update(1) | |
return video_path | |
def rife_inference_with_latents(model, latents): | |
rife_results = [] | |
latents = latents.to(device) | |
for i in range(latents.size(0)): | |
# [f, c, w, h] | |
latent = latents[i] | |
frames = ssim_interpolation_rife(model, latent) | |
pt_image = torch.stack([frames[i].squeeze(0) for i in range(len(frames))]) # (to [f, c, w, h]) | |
rife_results.append(pt_image) | |
return torch.stack(rife_results) | |
# if __name__ == "__main__": | |
# snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife") | |
# model = load_rife_model("model_rife") | |
# video_path = rife_inference_with_path(model, "/mnt/ceph/develop/jiawei/CogVideo/output/20241003_130720.mp4") | |
# print(video_path) |