Spaces:
Running
on
Zero
Running
on
Zero
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import ( | |
| T5EncoderModel, | |
| T5Tokenizer, | |
| ) | |
| from diffusers import ( | |
| AutoencoderOobleck, | |
| CosineDPMSolverMultistepScheduler, | |
| StableAudioDiTModel, | |
| StableAudioPipeline, | |
| StableAudioProjectionModel, | |
| ) | |
| from diffusers.utils import is_xformers_available | |
| from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch_gpu, torch_device | |
| from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS | |
| from ..test_pipelines_common import PipelineTesterMixin | |
| enable_full_determinism() | |
| class StableAudioPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = StableAudioPipeline | |
| params = frozenset( | |
| [ | |
| "prompt", | |
| "audio_end_in_s", | |
| "audio_start_in_s", | |
| "guidance_scale", | |
| "negative_prompt", | |
| "prompt_embeds", | |
| "negative_prompt_embeds", | |
| "initial_audio_waveforms", | |
| ] | |
| ) | |
| batch_params = TEXT_TO_AUDIO_BATCH_PARAMS | |
| required_optional_params = frozenset( | |
| [ | |
| "num_inference_steps", | |
| "num_waveforms_per_prompt", | |
| "generator", | |
| "latents", | |
| "output_type", | |
| "return_dict", | |
| "callback", | |
| "callback_steps", | |
| ] | |
| ) | |
| # There is not xformers version of the StableAudioPipeline custom attention processor | |
| test_xformers_attention = False | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| transformer = StableAudioDiTModel( | |
| sample_size=4, | |
| in_channels=3, | |
| num_layers=2, | |
| attention_head_dim=4, | |
| num_key_value_attention_heads=2, | |
| out_channels=3, | |
| cross_attention_dim=4, | |
| time_proj_dim=8, | |
| global_states_input_dim=8, | |
| cross_attention_input_dim=4, | |
| ) | |
| scheduler = CosineDPMSolverMultistepScheduler( | |
| solver_order=2, | |
| prediction_type="v_prediction", | |
| sigma_data=1.0, | |
| sigma_schedule="exponential", | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderOobleck( | |
| encoder_hidden_size=6, | |
| downsampling_ratios=[1, 2], | |
| decoder_channels=3, | |
| decoder_input_channels=3, | |
| audio_channels=2, | |
| channel_multiples=[2, 4], | |
| sampling_rate=4, | |
| ) | |
| torch.manual_seed(0) | |
| t5_repo_id = "hf-internal-testing/tiny-random-T5ForConditionalGeneration" | |
| text_encoder = T5EncoderModel.from_pretrained(t5_repo_id) | |
| tokenizer = T5Tokenizer.from_pretrained(t5_repo_id, truncation=True, model_max_length=25) | |
| torch.manual_seed(0) | |
| projection_model = StableAudioProjectionModel( | |
| text_encoder_dim=text_encoder.config.d_model, | |
| conditioning_dim=4, | |
| min_value=0, | |
| max_value=32, | |
| ) | |
| components = { | |
| "transformer": transformer, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "projection_model": projection_model, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| inputs = { | |
| "prompt": "A hammer hitting a wooden surface", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 6.0, | |
| } | |
| return inputs | |
| def test_save_load_local(self): | |
| # increase tolerance from 1e-4 -> 7e-3 to account for large composite model | |
| super().test_save_load_local(expected_max_difference=7e-3) | |
| def test_save_load_optional_components(self): | |
| # increase tolerance from 1e-4 -> 7e-3 to account for large composite model | |
| super().test_save_load_optional_components(expected_max_difference=7e-3) | |
| def test_stable_audio_ddim(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| stable_audio_pipe = StableAudioPipeline(**components) | |
| stable_audio_pipe = stable_audio_pipe.to(torch_device) | |
| stable_audio_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| output = stable_audio_pipe(**inputs) | |
| audio = output.audios[0] | |
| assert audio.ndim == 2 | |
| assert audio.shape == (2, 7) | |
| def test_stable_audio_without_prompts(self): | |
| components = self.get_dummy_components() | |
| stable_audio_pipe = StableAudioPipeline(**components) | |
| stable_audio_pipe = stable_audio_pipe.to(torch_device) | |
| stable_audio_pipe = stable_audio_pipe.to(torch_device) | |
| stable_audio_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["prompt"] = 3 * [inputs["prompt"]] | |
| # forward | |
| output = stable_audio_pipe(**inputs) | |
| audio_1 = output.audios[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| prompt = 3 * [inputs.pop("prompt")] | |
| text_inputs = stable_audio_pipe.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=stable_audio_pipe.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ).to(torch_device) | |
| text_input_ids = text_inputs.input_ids | |
| attention_mask = text_inputs.attention_mask | |
| prompt_embeds = stable_audio_pipe.text_encoder( | |
| text_input_ids, | |
| attention_mask=attention_mask, | |
| )[0] | |
| inputs["prompt_embeds"] = prompt_embeds | |
| inputs["attention_mask"] = attention_mask | |
| # forward | |
| output = stable_audio_pipe(**inputs) | |
| audio_2 = output.audios[0] | |
| assert (audio_1 - audio_2).abs().max() < 1e-2 | |
| def test_stable_audio_negative_without_prompts(self): | |
| components = self.get_dummy_components() | |
| stable_audio_pipe = StableAudioPipeline(**components) | |
| stable_audio_pipe = stable_audio_pipe.to(torch_device) | |
| stable_audio_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| negative_prompt = 3 * ["this is a negative prompt"] | |
| inputs["negative_prompt"] = negative_prompt | |
| inputs["prompt"] = 3 * [inputs["prompt"]] | |
| # forward | |
| output = stable_audio_pipe(**inputs) | |
| audio_1 = output.audios[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| prompt = 3 * [inputs.pop("prompt")] | |
| text_inputs = stable_audio_pipe.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=stable_audio_pipe.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ).to(torch_device) | |
| text_input_ids = text_inputs.input_ids | |
| attention_mask = text_inputs.attention_mask | |
| prompt_embeds = stable_audio_pipe.text_encoder( | |
| text_input_ids, | |
| attention_mask=attention_mask, | |
| )[0] | |
| inputs["prompt_embeds"] = prompt_embeds | |
| inputs["attention_mask"] = attention_mask | |
| negative_text_inputs = stable_audio_pipe.tokenizer( | |
| negative_prompt, | |
| padding="max_length", | |
| max_length=stable_audio_pipe.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ).to(torch_device) | |
| negative_text_input_ids = negative_text_inputs.input_ids | |
| negative_attention_mask = negative_text_inputs.attention_mask | |
| negative_prompt_embeds = stable_audio_pipe.text_encoder( | |
| negative_text_input_ids, | |
| attention_mask=negative_attention_mask, | |
| )[0] | |
| inputs["negative_prompt_embeds"] = negative_prompt_embeds | |
| inputs["negative_attention_mask"] = negative_attention_mask | |
| # forward | |
| output = stable_audio_pipe(**inputs) | |
| audio_2 = output.audios[0] | |
| assert (audio_1 - audio_2).abs().max() < 1e-2 | |
| def test_stable_audio_negative_prompt(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| stable_audio_pipe = StableAudioPipeline(**components) | |
| stable_audio_pipe = stable_audio_pipe.to(device) | |
| stable_audio_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| negative_prompt = "egg cracking" | |
| output = stable_audio_pipe(**inputs, negative_prompt=negative_prompt) | |
| audio = output.audios[0] | |
| assert audio.ndim == 2 | |
| assert audio.shape == (2, 7) | |
| def test_stable_audio_num_waveforms_per_prompt(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| stable_audio_pipe = StableAudioPipeline(**components) | |
| stable_audio_pipe = stable_audio_pipe.to(device) | |
| stable_audio_pipe.set_progress_bar_config(disable=None) | |
| prompt = "A hammer hitting a wooden surface" | |
| # test num_waveforms_per_prompt=1 (default) | |
| audios = stable_audio_pipe(prompt, num_inference_steps=2).audios | |
| assert audios.shape == (1, 2, 7) | |
| # test num_waveforms_per_prompt=1 (default) for batch of prompts | |
| batch_size = 2 | |
| audios = stable_audio_pipe([prompt] * batch_size, num_inference_steps=2).audios | |
| assert audios.shape == (batch_size, 2, 7) | |
| # test num_waveforms_per_prompt for single prompt | |
| num_waveforms_per_prompt = 2 | |
| audios = stable_audio_pipe( | |
| prompt, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt | |
| ).audios | |
| assert audios.shape == (num_waveforms_per_prompt, 2, 7) | |
| # test num_waveforms_per_prompt for batch of prompts | |
| batch_size = 2 | |
| audios = stable_audio_pipe( | |
| [prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt | |
| ).audios | |
| assert audios.shape == (batch_size * num_waveforms_per_prompt, 2, 7) | |
| def test_stable_audio_audio_end_in_s(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| stable_audio_pipe = StableAudioPipeline(**components) | |
| stable_audio_pipe = stable_audio_pipe.to(torch_device) | |
| stable_audio_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| output = stable_audio_pipe(audio_end_in_s=1.5, **inputs) | |
| audio = output.audios[0] | |
| assert audio.ndim == 2 | |
| assert audio.shape[1] / stable_audio_pipe.vae.sampling_rate == 1.5 | |
| output = stable_audio_pipe(audio_end_in_s=1.1875, **inputs) | |
| audio = output.audios[0] | |
| assert audio.ndim == 2 | |
| assert audio.shape[1] / stable_audio_pipe.vae.sampling_rate == 1.0 | |
| def test_attention_slicing_forward_pass(self): | |
| self._test_attention_slicing_forward_pass(test_mean_pixel_difference=False) | |
| def test_inference_batch_single_identical(self): | |
| self._test_inference_batch_single_identical(expected_max_diff=5e-4) | |
| def test_xformers_attention_forwardGenerator_pass(self): | |
| self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False) | |
| def test_stable_audio_input_waveform(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| stable_audio_pipe = StableAudioPipeline(**components) | |
| stable_audio_pipe = stable_audio_pipe.to(device) | |
| stable_audio_pipe.set_progress_bar_config(disable=None) | |
| prompt = "A hammer hitting a wooden surface" | |
| initial_audio_waveforms = torch.ones((1, 5)) | |
| # test raises error when no sampling rate | |
| with self.assertRaises(ValueError): | |
| audios = stable_audio_pipe( | |
| prompt, num_inference_steps=2, initial_audio_waveforms=initial_audio_waveforms | |
| ).audios | |
| # test raises error when wrong sampling rate | |
| with self.assertRaises(ValueError): | |
| audios = stable_audio_pipe( | |
| prompt, | |
| num_inference_steps=2, | |
| initial_audio_waveforms=initial_audio_waveforms, | |
| initial_audio_sampling_rate=stable_audio_pipe.vae.sampling_rate - 1, | |
| ).audios | |
| audios = stable_audio_pipe( | |
| prompt, | |
| num_inference_steps=2, | |
| initial_audio_waveforms=initial_audio_waveforms, | |
| initial_audio_sampling_rate=stable_audio_pipe.vae.sampling_rate, | |
| ).audios | |
| assert audios.shape == (1, 2, 7) | |
| # test works with num_waveforms_per_prompt | |
| num_waveforms_per_prompt = 2 | |
| audios = stable_audio_pipe( | |
| prompt, | |
| num_inference_steps=2, | |
| num_waveforms_per_prompt=num_waveforms_per_prompt, | |
| initial_audio_waveforms=initial_audio_waveforms, | |
| initial_audio_sampling_rate=stable_audio_pipe.vae.sampling_rate, | |
| ).audios | |
| assert audios.shape == (num_waveforms_per_prompt, 2, 7) | |
| # test num_waveforms_per_prompt for batch of prompts and input audio (two channels) | |
| batch_size = 2 | |
| initial_audio_waveforms = torch.ones((batch_size, 2, 5)) | |
| audios = stable_audio_pipe( | |
| [prompt] * batch_size, | |
| num_inference_steps=2, | |
| num_waveforms_per_prompt=num_waveforms_per_prompt, | |
| initial_audio_waveforms=initial_audio_waveforms, | |
| initial_audio_sampling_rate=stable_audio_pipe.vae.sampling_rate, | |
| ).audios | |
| assert audios.shape == (batch_size * num_waveforms_per_prompt, 2, 7) | |
| def test_sequential_cpu_offload_forward_pass(self): | |
| pass | |
| def test_sequential_offload_forward_pass_twice(self): | |
| pass | |
| class StableAudioPipelineIntegrationTests(unittest.TestCase): | |
| def setUp(self): | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): | |
| generator = torch.Generator(device=generator_device).manual_seed(seed) | |
| latents = np.random.RandomState(seed).standard_normal((1, 64, 1024)) | |
| latents = torch.from_numpy(latents).to(device=device, dtype=dtype) | |
| inputs = { | |
| "prompt": "A hammer hitting a wooden surface", | |
| "latents": latents, | |
| "generator": generator, | |
| "num_inference_steps": 3, | |
| "audio_end_in_s": 30, | |
| "guidance_scale": 2.5, | |
| } | |
| return inputs | |
| def test_stable_audio(self): | |
| stable_audio_pipe = StableAudioPipeline.from_pretrained("stabilityai/stable-audio-open-1.0") | |
| stable_audio_pipe = stable_audio_pipe.to(torch_device) | |
| stable_audio_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_inputs(torch_device) | |
| inputs["num_inference_steps"] = 25 | |
| audio = stable_audio_pipe(**inputs).audios[0] | |
| assert audio.ndim == 2 | |
| assert audio.shape == (2, int(inputs["audio_end_in_s"] * stable_audio_pipe.vae.sampling_rate)) | |
| # check the portion of the generated audio with the largest dynamic range (reduces flakiness) | |
| audio_slice = audio[0, 447590:447600] | |
| # fmt: off | |
| expected_slice = np.array( | |
| [-0.0278, 0.1096, 0.1877, 0.3178, 0.5329, 0.6990, 0.6972, 0.6186, 0.5608, 0.5060] | |
| ) | |
| # fmt: one | |
| max_diff = np.abs(expected_slice - audio_slice.detach().cpu().numpy()).max() | |
| assert max_diff < 1.5e-3 | |