Spaces:
Running
on
Zero
Running
on
Zero
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import random | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import ( | |
| CLIPImageProcessor, | |
| CLIPTextConfig, | |
| CLIPTextModel, | |
| CLIPTokenizer, | |
| CLIPVisionConfig, | |
| CLIPVisionModelWithProjection, | |
| ) | |
| from diffusers import ( | |
| AutoencoderKL, | |
| DDIMScheduler, | |
| I2VGenXLPipeline, | |
| ) | |
| from diffusers.models.unets import I2VGenXLUNet | |
| from diffusers.utils import is_xformers_available, load_image | |
| from diffusers.utils.testing_utils import ( | |
| enable_full_determinism, | |
| floats_tensor, | |
| numpy_cosine_similarity_distance, | |
| require_torch_gpu, | |
| skip_mps, | |
| slow, | |
| torch_device, | |
| ) | |
| from ..test_pipelines_common import PipelineTesterMixin, SDFunctionTesterMixin | |
| enable_full_determinism() | |
| class I2VGenXLPipelineFastTests(SDFunctionTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = I2VGenXLPipeline | |
| params = frozenset(["prompt", "negative_prompt", "image"]) | |
| batch_params = frozenset(["prompt", "negative_prompt", "image", "generator"]) | |
| # No `output_type`. | |
| required_optional_params = frozenset(["num_inference_steps", "generator", "latents", "return_dict"]) | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| scheduler = DDIMScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| beta_schedule="scaled_linear", | |
| clip_sample=False, | |
| set_alpha_to_one=False, | |
| ) | |
| torch.manual_seed(0) | |
| unet = I2VGenXLUNet( | |
| block_out_channels=(4, 8), | |
| layers_per_block=1, | |
| sample_size=32, | |
| in_channels=4, | |
| out_channels=4, | |
| down_block_types=("CrossAttnDownBlock3D", "DownBlock3D"), | |
| up_block_types=("UpBlock3D", "CrossAttnUpBlock3D"), | |
| cross_attention_dim=4, | |
| attention_head_dim=4, | |
| num_attention_heads=None, | |
| norm_num_groups=2, | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| block_out_channels=(8,), | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=["DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D"], | |
| latent_channels=4, | |
| sample_size=32, | |
| norm_num_groups=2, | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=4, | |
| intermediate_size=16, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=2, | |
| num_hidden_layers=2, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| hidden_act="gelu", | |
| projection_dim=32, | |
| ) | |
| text_encoder = CLIPTextModel(text_encoder_config) | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| torch.manual_seed(0) | |
| vision_encoder_config = CLIPVisionConfig( | |
| hidden_size=4, | |
| projection_dim=4, | |
| num_hidden_layers=2, | |
| num_attention_heads=2, | |
| image_size=32, | |
| intermediate_size=16, | |
| patch_size=1, | |
| ) | |
| image_encoder = CLIPVisionModelWithProjection(vision_encoder_config) | |
| torch.manual_seed(0) | |
| feature_extractor = CLIPImageProcessor(crop_size=32, size=32) | |
| components = { | |
| "unet": unet, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "text_encoder": text_encoder, | |
| "image_encoder": image_encoder, | |
| "tokenizer": tokenizer, | |
| "feature_extractor": feature_extractor, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "image": input_image, | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 6.0, | |
| "output_type": "pt", | |
| "num_frames": 4, | |
| "width": 32, | |
| "height": 32, | |
| } | |
| return inputs | |
| def test_text_to_video_default_case(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| inputs["output_type"] = "np" | |
| frames = pipe(**inputs).frames | |
| image_slice = frames[0][0][-3:, -3:, -1] | |
| assert frames[0][0].shape == (32, 32, 3) | |
| expected_slice = np.array([0.5146, 0.6525, 0.6032, 0.5204, 0.5675, 0.4125, 0.3016, 0.5172, 0.4095]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| def test_save_load_local(self): | |
| super().test_save_load_local(expected_max_difference=0.006) | |
| def test_sequential_cpu_offload_forward_pass(self): | |
| super().test_sequential_cpu_offload_forward_pass(expected_max_diff=0.008) | |
| def test_dict_tuple_outputs_equivalent(self): | |
| super().test_dict_tuple_outputs_equivalent(expected_max_difference=0.008) | |
| def test_save_load_optional_components(self): | |
| super().test_save_load_optional_components(expected_max_difference=0.008) | |
| def test_attention_slicing_forward_pass(self): | |
| pass | |
| def test_xformers_attention_forwardGenerator_pass(self): | |
| self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False, expected_max_diff=1e-2) | |
| def test_inference_batch_single_identical(self): | |
| super().test_inference_batch_single_identical(batch_size=2, expected_max_diff=0.008) | |
| def test_model_cpu_offload_forward_pass(self): | |
| super().test_model_cpu_offload_forward_pass(expected_max_diff=0.008) | |
| def test_num_videos_per_prompt(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| inputs["output_type"] = "np" | |
| frames = pipe(**inputs, num_videos_per_prompt=2).frames | |
| assert frames.shape == (2, 4, 32, 32, 3) | |
| assert frames[0][0].shape == (32, 32, 3) | |
| image_slice = frames[0][0][-3:, -3:, -1] | |
| expected_slice = np.array([0.5146, 0.6525, 0.6032, 0.5204, 0.5675, 0.4125, 0.3016, 0.5172, 0.4095]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| class I2VGenXLPipelineSlowTests(unittest.TestCase): | |
| def setUp(self): | |
| # clean up the VRAM before each test | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_i2vgen_xl(self): | |
| pipe = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16") | |
| pipe.enable_model_cpu_offload() | |
| pipe.set_progress_bar_config(disable=None) | |
| image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat_6.png?download=true" | |
| ) | |
| generator = torch.Generator("cpu").manual_seed(0) | |
| num_frames = 3 | |
| output = pipe( | |
| image=image, | |
| prompt="my cat", | |
| num_frames=num_frames, | |
| generator=generator, | |
| num_inference_steps=3, | |
| output_type="np", | |
| ) | |
| image = output.frames[0] | |
| assert image.shape == (num_frames, 704, 1280, 3) | |
| image_slice = image[0, -3:, -3:, -1] | |
| expected_slice = np.array([0.5482, 0.6244, 0.6274, 0.4584, 0.5935, 0.5937, 0.4579, 0.5767, 0.5892]) | |
| assert numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice.flatten()) < 1e-3 | |