|
import tensorflow as tf
|
|
import pickle
|
|
import gradio as gr
|
|
import numpy as np
|
|
import json
|
|
|
|
|
|
with open('tokenizer.json') as file:
|
|
tokenizer_data = file.read()
|
|
tokenizer = tf.keras.preprocessing.text.tokenizer_from_json(tokenizer_data)
|
|
|
|
|
|
def Infernce_Pipe(text,max_length = 100):
|
|
model = tf.keras.models.load_model("LSTM_senti.h5")
|
|
|
|
sequences = tokenizer.texts_to_sequences([text])
|
|
|
|
padded = tf.keras.preprocessing.sequence.pad_sequences(sequences, maxlen=max_length, padding='post', truncating='post')
|
|
|
|
pred = model.predict(padded)
|
|
predicted_index = np.argmax(pred)
|
|
|
|
labels = ['Negative', 'Neutral', 'Positive']
|
|
|
|
|
|
predicted_label = labels[predicted_index]
|
|
|
|
return predicted_label
|
|
|
|
interface = gr.Interface(
|
|
fn=Infernce_Pipe,
|
|
inputs=gr.Textbox(placeholder="Enter text here..."),
|
|
outputs=gr.Text(label="Prediction"),
|
|
title="Sentiment Analysis on Customer Review",
|
|
description="Enter a review to get its sentiment classification (Negative, Neutral, Positive)."
|
|
)
|
|
|
|
interface.launch(share=True)
|
|
|
|
|