|
import argparse |
|
import markdown2 |
|
import os |
|
import sys |
|
import uvicorn |
|
|
|
from pathlib import Path |
|
from typing import Union |
|
|
|
from fastapi import FastAPI, Depends |
|
from fastapi.responses import HTMLResponse |
|
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials |
|
from pydantic import BaseModel, Field |
|
from sse_starlette.sse import EventSourceResponse, ServerSentEvent |
|
from tclogger import logger |
|
|
|
from constants.models import AVAILABLE_MODELS_DICTS |
|
from constants.envs import CONFIG |
|
|
|
from messagers.message_composer import MessageComposer |
|
from mocks.stream_chat_mocker import stream_chat_mock |
|
from networks.huggingface_streamer import HuggingfaceStreamer |
|
from networks.openai_streamer import OpenaiStreamer |
|
|
|
|
|
class ChatAPIApp: |
|
def __init__(self): |
|
self.app = FastAPI( |
|
docs_url="/", |
|
title=CONFIG["app_name"], |
|
swagger_ui_parameters={"defaultModelsExpandDepth": -1}, |
|
version=CONFIG["version"], |
|
) |
|
self.setup_routes() |
|
|
|
def get_available_models(self): |
|
return {"object": "list", "data": AVAILABLE_MODELS_DICTS} |
|
|
|
def extract_api_key( |
|
credentials: HTTPAuthorizationCredentials = Depends( |
|
HTTPBearer(auto_error=False) |
|
), |
|
): |
|
api_key = None |
|
if credentials: |
|
api_key = credentials.credentials |
|
else: |
|
api_key = os.getenv("HF_TOKEN") |
|
|
|
if api_key: |
|
if api_key.startswith("hf_"): |
|
return api_key |
|
else: |
|
logger.warn(f"Invalid HF Token!") |
|
else: |
|
logger.warn("Not provide HF Token!") |
|
return None |
|
|
|
class ChatCompletionsPostItem(BaseModel): |
|
model: str = Field( |
|
default="mixtral-8x7b", |
|
description="(str) `mixtral-8x7b`", |
|
) |
|
messages: list = Field( |
|
default=[{"role": "user", "content": "Hello, who are you?"}], |
|
description="(list) Messages", |
|
) |
|
temperature: Union[float, None] = Field( |
|
default=0.5, |
|
description="(float) Temperature", |
|
) |
|
top_p: Union[float, None] = Field( |
|
default=0.95, |
|
description="(float) top p", |
|
) |
|
max_tokens: Union[int, None] = Field( |
|
default=-1, |
|
description="(int) Max tokens", |
|
) |
|
use_cache: bool = Field( |
|
default=False, |
|
description="(bool) Use cache", |
|
) |
|
stream: bool = Field( |
|
default=True, |
|
description="(bool) Stream", |
|
) |
|
|
|
def chat_completions( |
|
self, item: ChatCompletionsPostItem, api_key: str = Depends(extract_api_key) |
|
): |
|
if item.model == "gpt-3.5-turbo": |
|
streamer = OpenaiStreamer() |
|
stream_response = streamer.chat_response(messages=item.messages) |
|
else: |
|
streamer = HuggingfaceStreamer(model=item.model) |
|
composer = MessageComposer(model=item.model) |
|
composer.merge(messages=item.messages) |
|
stream_response = streamer.chat_response( |
|
prompt=composer.merged_str, |
|
temperature=item.temperature, |
|
top_p=item.top_p, |
|
max_new_tokens=item.max_tokens, |
|
api_key=api_key, |
|
use_cache=item.use_cache, |
|
) |
|
|
|
if item.stream: |
|
event_source_response = EventSourceResponse( |
|
streamer.chat_return_generator(stream_response), |
|
media_type="text/event-stream", |
|
ping=2000, |
|
ping_message_factory=lambda: ServerSentEvent(**{"comment": ""}), |
|
) |
|
return event_source_response |
|
else: |
|
data_response = streamer.chat_return_dict(stream_response) |
|
return data_response |
|
|
|
def get_readme(self): |
|
readme_path = Path(__file__).parents[1] / "README.md" |
|
with open(readme_path, "r", encoding="utf-8") as rf: |
|
readme_str = rf.read() |
|
readme_html = markdown2.markdown( |
|
readme_str, extras=["table", "fenced-code-blocks", "highlightjs-lang"] |
|
) |
|
return readme_html |
|
|
|
def setup_routes(self): |
|
for prefix in ["", "/v1", "/api", "/api/v1"]: |
|
if prefix in ["/api/v1"]: |
|
include_in_schema = True |
|
else: |
|
include_in_schema = False |
|
|
|
self.app.get( |
|
prefix + "/models", |
|
summary="Get available models", |
|
include_in_schema=include_in_schema, |
|
)(self.get_available_models) |
|
|
|
self.app.post( |
|
prefix + "/chat/completions", |
|
summary="Chat completions in conversation session", |
|
include_in_schema=include_in_schema, |
|
)(self.chat_completions) |
|
self.app.get( |
|
"/readme", |
|
summary="README of HF LLM API", |
|
response_class=HTMLResponse, |
|
include_in_schema=False, |
|
)(self.get_readme) |
|
|
|
|
|
class ArgParser(argparse.ArgumentParser): |
|
def __init__(self, *args, **kwargs): |
|
super(ArgParser, self).__init__(*args, **kwargs) |
|
|
|
self.add_argument( |
|
"-s", |
|
"--host", |
|
type=str, |
|
default=CONFIG["host"], |
|
help=f"Host for {CONFIG['app_name']}", |
|
) |
|
self.add_argument( |
|
"-p", |
|
"--port", |
|
type=int, |
|
default=CONFIG["port"], |
|
help=f"Port for {CONFIG['app_name']}", |
|
) |
|
|
|
self.add_argument( |
|
"-d", |
|
"--dev", |
|
default=False, |
|
action="store_true", |
|
help="Run in dev mode", |
|
) |
|
|
|
self.args = self.parse_args(sys.argv[1:]) |
|
|
|
|
|
app = ChatAPIApp().app |
|
|
|
if __name__ == "__main__": |
|
args = ArgParser().args |
|
if args.dev: |
|
uvicorn.run("__main__:app", host=args.host, port=args.port, reload=True) |
|
else: |
|
uvicorn.run("__main__:app", host=args.host, port=args.port, reload=False) |
|
|
|
|
|
|
|
|