Shubhangi28's picture
Update app.py
25fd157
import torch
import gradio as gr
from torch import nn
from torch.nn import functional as F
import torchvision
from PIL import Image
from torchvision import transforms
transformer = transforms.Compose([
transforms.Resize((224, 224)),#standard pixel value of image which we want to pass in resnet18
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(degrees=10),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])#(mean,std deviation)these values will be same for all the resnet models coz all are trained on imageNet
])
model1=torch.jit.load('scripted_vehicle_model.pt',map_location=torch.device('cpu'))
classes=['Bus','bicycle','car']
def predict(inp):
inp=transformer(inp).unsqueeze(0)
#inp = transforms.ToTensor()(inp).unsqueeze(0)
with torch.no_grad():
prediction =F.softmax(model1(inp)[0], dim=0)
confidences = {classes[i]: float(prediction[i]) for i in range(3)}
return confidences
gr.Interface(predict,inputs=gr.inputs.Image(label="Input Image"),outputs='label').launch(debug='True')