Spaces:
Runtime error
Runtime error
""" | |
modified based on diffusion library from Huggingface: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py | |
""" | |
import inspect | |
import warnings | |
from typing import List, Optional, Union | |
import torch | |
from tqdm.auto import tqdm | |
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer | |
from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
from diffusers.pipeline_utils import DiffusionPipeline | |
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler | |
from safety_checker import StableDiffusionSafetyChecker | |
from dataclasses import dataclass | |
from typing import List, Union | |
import numpy as np | |
import PIL | |
from diffusers.utils import BaseOutput | |
class StableDiffusionPipelineOutput(BaseOutput): | |
""" | |
Output class for Stable Diffusion pipelines. | |
Args: | |
images (`List[PIL.Image.Image]` or `np.ndarray`) | |
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width, | |
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. | |
nsfw_content_detected (`List[bool]`) | |
List of flags denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
(nsfw) content. | |
""" | |
images: Union[List[PIL.Image.Image], np.ndarray] | |
nsfw_content_detected: List[bool] | |
class ComposableStableDiffusionPipeline(DiffusionPipeline): | |
r""" | |
Pipeline for text-to-image generation using Stable Diffusion. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`CLIPTextModel`]): | |
Frozen text-encoder. Stable Diffusion uses the text portion of | |
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
safety_checker ([`StableDiffusionSafetyChecker`]): | |
Classification module that estimates whether generated images could be considered offsensive or harmful. | |
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details. | |
feature_extractor ([`CLIPFeatureExtractor`]): | |
Model that extracts features from generated images to be used as inputs for the `safety_checker`. | |
""" | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], | |
safety_checker: StableDiffusionSafetyChecker, | |
feature_extractor: CLIPFeatureExtractor, | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
safety_checker=safety_checker, | |
feature_extractor=feature_extractor, | |
) | |
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): | |
r""" | |
Enable sliced attention computation. | |
When this option is enabled, the attention module will split the input tensor in slices, to compute attention | |
in several steps. This is useful to save some memory in exchange for a small speed decrease. | |
Args: | |
slice_size (`str` or `int`, *optional*, defaults to `"auto"`): | |
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If | |
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, | |
`attention_head_dim` must be a multiple of `slice_size`. | |
""" | |
if slice_size == "auto": | |
# half the attention head size is usually a good trade-off between | |
# speed and memory | |
slice_size = self.unet.config.attention_head_dim // 2 | |
self.unet.set_attention_slice(slice_size) | |
def disable_attention_slicing(self): | |
r""" | |
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go | |
back to computing attention in one step. | |
""" | |
# set slice_size = `None` to disable `attention slicing` | |
self.enable_attention_slicing(None) | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
height: Optional[int] = 512, | |
width: Optional[int] = 512, | |
num_inference_steps: Optional[int] = 50, | |
guidance_scale: Optional[float] = 7.5, | |
eta: Optional[float] = 0.0, | |
generator: Optional[torch.Generator] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
weights: Optional[str] = "", | |
**kwargs, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide the image generation. | |
height (`int`, *optional*, defaults to 512): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to 512): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (Ξ·) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator`, *optional*): | |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | |
deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
When returning a tuple, the first element is a list with the generated images, and the second element is a | |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
(nsfw) content, according to the `safety_checker`. | |
""" | |
if "torch_device" in kwargs: | |
device = kwargs.pop("torch_device") | |
warnings.warn( | |
"`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0." | |
" Consider using `pipe.to(torch_device)` instead." | |
) | |
# Set device as before (to be removed in 0.3.0) | |
if device is None: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
self.to(device) | |
if isinstance(prompt, str): | |
batch_size = 1 | |
elif isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if '|' in prompt: | |
prompt = [x.strip() for x in prompt.split('|')] | |
print(f"composing {prompt}...") | |
# get prompt text embeddings | |
text_input = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0] | |
if not weights: | |
# specify weights for prompts (excluding the unconditional score) | |
print('using equal weights for all prompts...') | |
pos_weights = torch.tensor([1 / (text_embeddings.shape[0] - 1)] * (text_embeddings.shape[0] - 1), | |
device=self.device).reshape(-1, 1, 1, 1) | |
neg_weights = torch.tensor([1.], device=self.device).reshape(-1, 1, 1, 1) | |
mask = torch.tensor([False] + [True] * pos_weights.shape[0], dtype=torch.bool) | |
else: | |
# set prompt weight for each | |
num_prompts = len(prompt) if isinstance(prompt, list) else 1 | |
weights = [float(w.strip()) for w in weights.split("|")] | |
if len(weights) < num_prompts: | |
weights.append(1.) | |
weights = torch.tensor(weights, device=self.device) | |
assert len(weights) == text_embeddings.shape[0], "weights specified are not equal to the number of prompts" | |
pos_weights = [] | |
neg_weights = [] | |
mask = [] # first one is unconditional score | |
for w in weights: | |
if w > 0: | |
pos_weights.append(w) | |
mask.append(True) | |
else: | |
neg_weights.append(abs(w)) | |
mask.append(False) | |
# normalize the weights | |
pos_weights = torch.tensor(pos_weights, device=self.device).reshape(-1, 1, 1, 1) | |
pos_weights = pos_weights / pos_weights.sum() | |
neg_weights = torch.tensor(neg_weights, device=self.device).reshape(-1, 1, 1, 1) | |
neg_weights = neg_weights / neg_weights.sum() | |
mask = torch.tensor(mask, device=self.device, dtype=torch.bool) | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance: | |
max_length = text_input.input_ids.shape[-1] | |
if torch.all(mask): | |
# no negative prompts, so we use empty string as the negative prompt | |
uncond_input = self.tokenizer( | |
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" | |
) | |
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
# update negative weights | |
neg_weights = torch.tensor([1.], device=self.device) | |
mask = torch.tensor([False] + mask.detach().tolist(), device=self.device, dtype=torch.bool) | |
# get the initial random noise unless the user supplied it | |
# Unlike in other pipelines, latents need to be generated in the target device | |
# for 1-to-1 results reproducibility with the CompVis implementation. | |
# However this currently doesn't work in `mps`. | |
latents_device = "cpu" if self.device.type == "mps" else self.device | |
latents_shape = (batch_size, self.unet.in_channels, height // 8, width // 8) | |
if latents is None: | |
latents = torch.randn( | |
latents_shape, | |
generator=generator, | |
device=latents_device, | |
) | |
else: | |
if latents.shape != latents_shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") | |
latents = latents.to(self.device) | |
# set timesteps | |
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) | |
extra_set_kwargs = {} | |
if accepts_offset: | |
extra_set_kwargs["offset"] = 1 | |
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) | |
# if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas | |
if isinstance(self.scheduler, LMSDiscreteScheduler): | |
latents = latents * self.scheduler.sigmas[0] | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (Ξ·) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to Ξ· in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * text_embeddings.shape[0]) if do_classifier_free_guidance else latents | |
if isinstance(self.scheduler, LMSDiscreteScheduler): | |
sigma = self.scheduler.sigmas[i] | |
# the model input needs to be scaled to match the continuous ODE formulation in K-LMS | |
latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5) | |
# reduce memory by predicting each score sequentially | |
noise_preds = [] | |
# predict the noise residual | |
for latent_in, text_embedding_in in zip( | |
torch.chunk(latent_model_input, chunks=latent_model_input.shape[0], dim=0), | |
torch.chunk(text_embeddings, chunks=text_embeddings.shape[0], dim=0)): | |
noise_preds.append(self.unet(latent_in, t, encoder_hidden_states=text_embedding_in).sample) | |
noise_preds = torch.cat(noise_preds, dim=0) | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond = (noise_preds[~mask] * neg_weights).sum(dim=0, keepdims=True) | |
noise_pred_text = (noise_preds[mask] * pos_weights).sum(dim=0, keepdims=True) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
if isinstance(self.scheduler, LMSDiscreteScheduler): | |
latents = self.scheduler.step(noise_pred, i, latents, **extra_step_kwargs).prev_sample | |
else: | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
# scale and decode the image latents with vae | |
latents = 1 / 0.18215 * latents | |
image = self.vae.decode(latents).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).numpy() | |
# run safety checker | |
safety_cheker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device) | |
image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_cheker_input.pixel_values) | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |