Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
"""Copy of compose_glide.ipynb | |
Automatically generated by Colaboratory. | |
Original file is located at | |
https://colab.research.google.com/drive/19xx6Nu4FeiGj-TzTUFxBf-15IkeuFx_F | |
""" | |
# from PIL import Image | |
# from IPython.display import display | |
import torch as th | |
import numpy as np | |
from glide_text2im.download import load_checkpoint | |
from glide_text2im.model_creation import ( | |
create_model_and_diffusion, | |
model_and_diffusion_defaults, | |
model_and_diffusion_defaults_upsampler | |
) | |
# This notebook supports both CPU and GPU. | |
# On CPU, generating one sample may take on the order of 20 minutes. | |
# On a GPU, it should be under a minute. | |
has_cuda = th.cuda.is_available() | |
device = th.device('cpu' if not has_cuda else 'cuda') | |
# Create base model. | |
timestep_respacing = 100 #@param{type: 'number'} | |
options = model_and_diffusion_defaults() | |
options['use_fp16'] = has_cuda | |
options['timestep_respacing'] = str(timestep_respacing) # use 100 diffusion steps for fast sampling | |
model, diffusion = create_model_and_diffusion(**options) | |
model.eval() | |
if has_cuda: | |
model.convert_to_fp16() | |
model.to(device) | |
model.load_state_dict(load_checkpoint('base', device)) | |
print('total base parameters', sum(x.numel() for x in model.parameters())) | |
# Create upsampler model. | |
options_up = model_and_diffusion_defaults_upsampler() | |
options_up['use_fp16'] = has_cuda | |
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling | |
model_up, diffusion_up = create_model_and_diffusion(**options_up) | |
model_up.eval() | |
if has_cuda: | |
model_up.convert_to_fp16() | |
model_up.to(device) | |
model_up.load_state_dict(load_checkpoint('upsample', device)) | |
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters())) | |
def show_images(batch: th.Tensor): | |
""" Display a batch of images inline. """ | |
scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu() | |
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3]) | |
display(Image.fromarray(reshaped.numpy())) | |
def compose_language_descriptions(prompt): | |
#@markdown `prompt`: when composing multiple sentences, using `|` as the delimiter. | |
prompts = [x.strip() for x in prompt.split('|')] | |
batch_size = 1 | |
guidance_scale = 10 #@param{type: 'number'} | |
# Tune this parameter to control the sharpness of 256x256 images. | |
# A value of 1.0 is sharper, but sometimes results in grainy artifacts. | |
upsample_temp = 0.980 #@param{type: 'number'} | |
masks = [True] * len(prompts) + [False] | |
# coefficients = th.tensor([0.5, 0.5], device=device).reshape(-1, 1, 1, 1) | |
masks = th.tensor(masks, dtype=th.bool, device=device) | |
# sampling function | |
def model_fn(x_t, ts, **kwargs): | |
half = x_t[:1] | |
combined = th.cat([half] * x_t.size(0), dim=0) | |
model_out = model(combined, ts, **kwargs) | |
eps, rest = model_out[:, :3], model_out[:, 3:] | |
cond_eps = eps[masks].mean(dim=0, keepdim=True) | |
# cond_eps = (coefficients * eps[masks]).sum(dim=0)[None] | |
uncond_eps = eps[~masks].mean(dim=0, keepdim=True) | |
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps) | |
eps = th.cat([half_eps] * x_t.size(0), dim=0) | |
return th.cat([eps, rest], dim=1) | |
############################## | |
# Sample from the base model # | |
############################## | |
# Create the text tokens to feed to the model. | |
def sample_64(prompts): | |
tokens_list = [model.tokenizer.encode(prompt) for prompt in prompts] | |
outputs = [model.tokenizer.padded_tokens_and_mask( | |
tokens, options['text_ctx'] | |
) for tokens in tokens_list] | |
cond_tokens, cond_masks = zip(*outputs) | |
cond_tokens, cond_masks = list(cond_tokens), list(cond_masks) | |
full_batch_size = batch_size * (len(prompts) + 1) | |
uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask( | |
[], options['text_ctx'] | |
) | |
# Pack the tokens together into model kwargs. | |
model_kwargs = dict( | |
tokens=th.tensor( | |
cond_tokens + [uncond_tokens], device=device | |
), | |
mask=th.tensor( | |
cond_masks + [uncond_mask], | |
dtype=th.bool, | |
device=device, | |
), | |
) | |
# Sample from the base model. | |
model.del_cache() | |
samples = diffusion.p_sample_loop( | |
model_fn, | |
(full_batch_size, 3, options["image_size"], options["image_size"]), | |
device=device, | |
clip_denoised=True, | |
progress=True, | |
model_kwargs=model_kwargs, | |
cond_fn=None, | |
)[:batch_size] | |
model.del_cache() | |
# Show the output | |
return samples | |
############################## | |
# Upsample the 64x64 samples # | |
############################## | |
def upsampling_256(prompts, samples): | |
tokens = model_up.tokenizer.encode("".join(prompts)) | |
tokens, mask = model_up.tokenizer.padded_tokens_and_mask( | |
tokens, options_up['text_ctx'] | |
) | |
# Create the model conditioning dict. | |
model_kwargs = dict( | |
# Low-res image to upsample. | |
low_res=((samples+1)*127.5).round()/127.5 - 1, | |
# Text tokens | |
tokens=th.tensor( | |
[tokens] * batch_size, device=device | |
), | |
mask=th.tensor( | |
[mask] * batch_size, | |
dtype=th.bool, | |
device=device, | |
), | |
) | |
# Sample from the base model. | |
model_up.del_cache() | |
up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"]) | |
up_samples = diffusion_up.ddim_sample_loop( | |
model_up, | |
up_shape, | |
noise=th.randn(up_shape, device=device) * upsample_temp, | |
device=device, | |
clip_denoised=True, | |
progress=True, | |
model_kwargs=model_kwargs, | |
cond_fn=None, | |
)[:batch_size] | |
model_up.del_cache() | |
# Show the output | |
return up_samples | |
# sampling 64x64 images | |
samples = sample_64(prompts) | |
# show_images(samples) | |
# upsample from 64x64 to 256x256 | |
upsamples = upsampling_256(prompts, samples) | |
# show_images(upsamples) | |
out_img = upsamples[0].permute(1,2,0) | |
out_img = (out_img+1)/2 | |
out_img = np.array(out_img.data.to('cpu')) | |
return out_img | |
# prompt = "a camel | a forest" #@param{type: 'string'} | |
# out_img = compose_language_descriptions(prompt) | |
examples = ['a camel | a forest', 'A cloudy blue sky | A mountain in the horizon | Cherry Blossoms in front of the mountain'] | |
import gradio as gr | |
gr.Interface(title='Compositional Visual Generation with Composable Diffusion Models', | |
description='Demo for Composable Diffusion (~20s per example). Project Page: https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/. \nThis demo is based on the released GLIDE model (https://github.com/openai/glide-text2im) for composing natural language descriptions. \nFor composing objects and object relations, see the project page for more information.', | |
fn=compose_language_descriptions, inputs='text', outputs='image', examples=examples).launch(); | |