Spaces:
Runtime error
Runtime error
| import torch | |
| import gradio as gr | |
| from torch import nn | |
| from torch.nn import functional as F | |
| import torchvision | |
| from PIL import Image | |
| from torchvision import transforms | |
| transformer = transforms.Compose([ | |
| transforms.ToPILImage(), | |
| transforms.Resize((224, 224)), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
| ]) | |
| model_best=torch.jit.load('model_scriptedd.pt',map_location=torch.device('cpu')) | |
| classes=['Good luck','Love','Ok','Thumb up','Victory'] | |
| def predict(inp): | |
| inp=transformer(inp).unsqueeze(0) | |
| with torch.no_grad(): | |
| prediction =F.softmax(model_best(inp)[0], dim=0) | |
| confidences = {classes[i]: float(prediction[i]) for i in range(5)} | |
| return confidences | |
| gr.Interface(predict,inputs=gr.inputs.Image(label="Input Image"),outputs='label').launch(debug='True') | |
| #gr.Interface(predict,inputs=[gr.inputs.Image(label="Input Image", source="webcam"),gr.inputs.Image(label="Input Image")],outputs='label').launch(debug='True') |