Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
from model_smol2 import LlamaForCausalLM, config_model
|
5 |
+
|
6 |
+
# Instantiate the model
|
7 |
+
model = LlamaForCausalLM(config_model)
|
8 |
+
|
9 |
+
# Load the checkpoint
|
10 |
+
checkpoint_path = "final_checkpoint.pt"
|
11 |
+
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
12 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
13 |
+
model.eval()
|
14 |
+
|
15 |
+
# Load tokenizer (replace with the appropriate tokenizer if you're using a custom one)
|
16 |
+
# Load the tokenizer
|
17 |
+
TOKENIZER_PATH = "HuggingFaceTB/cosmo2-tokenizer"
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH)
|
19 |
+
if tokenizer.pad_token is None:
|
20 |
+
tokenizer.pad_token = tokenizer.eos_token if tokenizer.eos_token else "[PAD]"
|
21 |
+
|
22 |
+
|
23 |
+
# Text generation function
|
24 |
+
def generate_text(
|
25 |
+
prompt, max_length=50, temperature=0.7, top_k=50, repetition_penalty=1.2, n_gram_block=2
|
26 |
+
):
|
27 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
28 |
+
generated_tokens = input_ids[0].tolist()
|
29 |
+
|
30 |
+
with torch.no_grad():
|
31 |
+
for _ in range(max_length):
|
32 |
+
outputs = model(input_ids) # model outputs
|
33 |
+
|
34 |
+
# Check if the output is a dictionary with logits
|
35 |
+
if isinstance(outputs, dict) and 'logits' in outputs:
|
36 |
+
logits = outputs['logits'][:, -1, :]
|
37 |
+
else:
|
38 |
+
# If not, treat the output as a plain tensor
|
39 |
+
logits = outputs[:, -1, :]
|
40 |
+
|
41 |
+
# Repetition penalty
|
42 |
+
for token_id in set(generated_tokens):
|
43 |
+
logits[:, token_id] /= repetition_penalty
|
44 |
+
|
45 |
+
# n-gram blocking
|
46 |
+
if len(generated_tokens) >= n_gram_block:
|
47 |
+
n_gram = tuple(generated_tokens[-n_gram_block:])
|
48 |
+
for token_id in set(generated_tokens):
|
49 |
+
if generated_tokens[-n_gram_block:] == list(n_gram):
|
50 |
+
logits[:, token_id] -= 1e9
|
51 |
+
|
52 |
+
logits /= temperature
|
53 |
+
top_k_logits, top_k_indices = torch.topk(logits, top_k, dim=-1)
|
54 |
+
probs = torch.softmax(top_k_logits, dim=-1)
|
55 |
+
|
56 |
+
next_token_idx = torch.multinomial(probs, num_samples=1)
|
57 |
+
next_token = top_k_indices[0, next_token_idx[0]]
|
58 |
+
|
59 |
+
generated_tokens.append(next_token.item())
|
60 |
+
input_ids = torch.cat([input_ids, next_token.unsqueeze(0)], dim=1)
|
61 |
+
|
62 |
+
if next_token.item() == tokenizer.eos_token_id:
|
63 |
+
break
|
64 |
+
|
65 |
+
return tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
66 |
+
|
67 |
+
|
68 |
+
# Gradio UI
|
69 |
+
def generate_response(prompt, max_length, temperature, top_k, repetition_penalty, n_gram_block):
|
70 |
+
return generate_text(prompt, max_length, temperature, top_k, repetition_penalty, n_gram_block)
|
71 |
+
|
72 |
+
with gr.Blocks() as demo:
|
73 |
+
gr.Markdown("# Smol2 Text Generator")
|
74 |
+
with gr.Row():
|
75 |
+
with gr.Column():
|
76 |
+
prompt_input = gr.Textbox(label="Input Prompt", placeholder="Enter your text prompt here...")
|
77 |
+
max_length = gr.Slider(label="Max Length", minimum=10, maximum=200, value=50)
|
78 |
+
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.5, value=0.7, step=0.1)
|
79 |
+
top_k = gr.Slider(label="Top K", minimum=10, maximum=100, value=50, step=1)
|
80 |
+
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.2, step=0.1)
|
81 |
+
n_gram_block = gr.Slider(label="N-Gram Blocking", minimum=1, maximum=5, value=2, step=1)
|
82 |
+
generate_button = gr.Button("Generate Text")
|
83 |
+
with gr.Column():
|
84 |
+
output_text = gr.Textbox(label="Generated Text", lines=10)
|
85 |
+
|
86 |
+
generate_button.click(
|
87 |
+
generate_response,
|
88 |
+
inputs=[prompt_input, max_length, temperature, top_k, repetition_penalty, n_gram_block],
|
89 |
+
outputs=[output_text],
|
90 |
+
)
|
91 |
+
|
92 |
+
demo.launch()
|