Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import math | |
from transformers.modeling_outputs import CausalLMOutputWithPast | |
# 1. Custom Configuration Class | |
class CustomConfig: | |
def __init__(self): | |
# Architecture Parameters | |
self.vocab_size = 49152 | |
self.hidden_size = 576 # d_model | |
self.intermediate_size = 1536 # FFN dimension | |
self.num_hidden_layers = 30 # Number of decoder layers | |
self.num_attention_heads = 9 # Query heads | |
self.num_key_value_heads = 3 # Key/Value heads | |
self.max_position_embeddings = 2048 | |
self.rms_norm_eps = 1e-5 | |
self.rope_theta = 10000.0 # Rotary embedding base | |
# Tokenizer/Generation Params | |
self.pad_token_id = None | |
self.bos_token_id = 0 | |
self.eos_token_id = 0 | |
def to_dict(self): | |
# Serialize the config parameters | |
return {k: v for k, v in self.__dict__.items() if not k.startswith("_")} | |
# 2. Custom RMS Normalization | |
class CustomRMSNorm(nn.Module): | |
def __init__(self, dim, eps=1e-5): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(dim)) | |
self.eps = eps | |
def _norm(self, x): | |
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) | |
def forward(self, x): | |
return self.weight * self._norm(x.float()).type_as(x) | |
# 3. Rotary Positional Embeddings | |
class RotaryEmbedding(nn.Module): | |
def __init__(self, dim, max_seq_len=2048, theta=10000.0): | |
super().__init__() | |
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim)) | |
self.register_buffer("inv_freq", inv_freq) | |
self._set_cos_sin_cache(max_seq_len) | |
def _set_cos_sin_cache(self, seq_len): | |
t = torch.arange(seq_len, device=self.inv_freq.device) | |
freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos()[None, None, :, :]) | |
self.register_buffer("sin_cached", emb.sin()[None, None, :, :]) | |
def forward(self, x, seq_len): | |
if seq_len > self.cos_cached.shape[2]: | |
self._set_cos_sin_cache(seq_len) | |
return self.cos_cached[:, :, :seq_len], self.sin_cached[:, :, :seq_len] | |
# 4. Attention Layer with Grouped Query Attention | |
class CustomAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.hidden_size // self.num_heads | |
self.num_kv_heads = config.num_key_value_heads | |
# Projections | |
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) | |
self.k_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.head_dim, bias=False) | |
self.v_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.head_dim, bias=False) | |
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) | |
# Rotary embeddings | |
self.rotary_emb = RotaryEmbedding( | |
self.head_dim, | |
max_seq_len=config.max_position_embeddings, | |
theta=config.rope_theta | |
) | |
def forward(self, x, attention_mask=None): | |
batch_size, seq_len, _ = x.shape | |
# Project queries/keys/values | |
q = self.q_proj(x) | |
k = self.k_proj(x) | |
v = self.v_proj(x) | |
# Reshape for attention computation | |
q = q.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2) | |
k = k.view(batch_size, seq_len, self.num_kv_heads, self.head_dim).transpose(1, 2) | |
v = v.view(batch_size, seq_len, self.num_kv_heads, self.head_dim).transpose(1, 2) | |
# Apply rotary embeddings | |
cos, sin = self.rotary_emb(x, seq_len=seq_len) | |
q, k = apply_rotary_pos_emb(q, k, cos, sin) | |
# Repeat keys and values to match the number of query heads | |
repeat_factor = self.num_heads // self.num_kv_heads | |
k = k.repeat_interleave(repeat_factor, dim=1) | |
v = v.repeat_interleave(repeat_factor, dim=1) | |
# Attention scores | |
attn_weights = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(self.head_dim) | |
# Apply attention mask | |
if attention_mask is not None: | |
attn_weights = attn_weights + attention_mask | |
attn_weights = torch.softmax(attn_weights, dim=-1) | |
attn_output = torch.matmul(attn_weights, v) | |
# Reshape and project back | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.view(batch_size, seq_len, self.hidden_size) | |
return self.o_proj(attn_output) | |
# 5. MLP Layer | |
class CustomMLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) | |
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) | |
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) | |
self.act_fn = nn.SiLU() | |
def forward(self, x): | |
gate = self.act_fn(self.gate_proj(x)) | |
up = self.up_proj(x) | |
return self.down_proj(gate * up) | |
# 6. Transformer Decoder Layer | |
class DecoderLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.self_attn = CustomAttention(config) | |
self.mlp = CustomMLP(config) | |
self.input_norm = CustomRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.post_attn_norm = CustomRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
def forward(self, x, attention_mask=None): | |
# Self-attention | |
residual = x | |
x = self.input_norm(x) | |
x = self.self_attn(x, attention_mask) | |
x = residual + x | |
# MLP | |
residual = x | |
x = self.post_attn_norm(x) | |
x = self.mlp(x) | |
x = residual + x | |
return x | |
# 7. Full Model | |
class CustomLLM(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) | |
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.norm = CustomRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
self.lm_head.weight = self.embed_tokens.weight # Tie the weights To reduce param | |
# Initialize weights | |
self.apply(self._init_weights) | |
def _init_weights(self, module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
if module.bias is not None: | |
torch.nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
def forward(self, input_ids, attention_mask=None, labels=None): | |
x = self.embed_tokens(input_ids) | |
batch_size, seq_len = input_ids.shape | |
# Create causal mask | |
causal_mask = torch.full((seq_len, seq_len), float("-inf"), device=x.device) | |
causal_mask = torch.triu(causal_mask, diagonal=1) | |
causal_mask = causal_mask[None, None, :, :] # Shape: [1, 1, seq_len, seq_len] | |
# Combine with padding mask | |
if attention_mask is not None: | |
padding_mask = (1.0 - attention_mask.float()) * torch.finfo(x.dtype).min | |
padding_mask = padding_mask.view(batch_size, 1, 1, seq_len) | |
combined_mask = causal_mask + padding_mask | |
else: | |
combined_mask = causal_mask | |
# Process through decoder layers | |
for layer in self.layers: | |
x = layer(x, attention_mask=combined_mask) | |
x = self.norm(x) | |
logits = self.lm_head(x) | |
loss = None | |
if labels is not None: | |
# Shift logits and labels for causal LM | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
loss_fct = nn.CrossEntropyLoss() | |
loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1)) | |
return CausalLMOutputWithPast( | |
loss=loss, | |
logits=logits, | |
past_key_values=None, | |
hidden_states=None, | |
attentions=None, | |
) | |
def generate( | |
self, | |
input_ids: torch.Tensor, | |
max_new_tokens: int = 100, | |
temperature: float = 1.0, | |
top_k: int = None, | |
top_p: float = None, | |
repetition_penalty: float = 1.0, | |
eos_token_id: int = None, | |
pad_token_id: int = None, | |
): | |
""" | |
Generates text using various decoding strategies. | |
Args: | |
input_ids: Input token IDs of shape (batch_size, seq_len) | |
max_new_tokens: Maximum number of tokens to generate | |
temperature: Sampling temperature (higher = more random) | |
top_k: Top-k sampling cutoff | |
top_p: Nucleus sampling cutoff | |
repetition_penalty: Penalty for repeated tokens (1.0 = no penalty) | |
eos_token_id: Stop generation when this token is produced | |
pad_token_id: Padding token ID for sequence termination | |
Returns: | |
Generated sequence of token IDs | |
""" | |
# Ensure model is in eval mode | |
self.eval() | |
# Move inputs to model device | |
input_ids = input_ids.to(self.embed_tokens.weight.device) | |
batch_size = input_ids.size(0) | |
# Storage for generated sequences | |
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device) | |
past_key_values = None # Could implement KV caching here for efficiency | |
for _ in range(max_new_tokens): | |
# Forward pass (only compute last logits for efficiency) | |
with torch.no_grad(): | |
outputs = self(input_ids) | |
next_token_logits = outputs.logits[:, -1, :] | |
# Repetition penalty | |
if repetition_penalty != 1.0: | |
next_token_logits = self._apply_repetition_penalty( | |
next_token_logits, input_ids, repetition_penalty | |
) | |
# Temperature scaling | |
if temperature != 1.0: | |
next_token_logits = next_token_logits / temperature | |
# Top-k filtering | |
if top_k is not None and top_k > 0: | |
top_k_values, _ = torch.topk(next_token_logits, top_k) | |
min_top_k = top_k_values[:, -1].unsqueeze(-1) | |
next_token_logits = torch.where( | |
next_token_logits < min_top_k, | |
torch.tensor(-float('inf')).to(next_token_logits.device), | |
next_token_logits | |
) | |
# Top-p (nucleus) sampling | |
if top_p is not None and top_p < 1.0: | |
sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True) | |
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1) | |
# Remove tokens with cumulative probability above threshold | |
sorted_indices_to_remove = cumulative_probs > top_p | |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() | |
sorted_indices_to_remove[..., 0] = 0 | |
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) | |
next_token_logits[indices_to_remove] = -float('inf') | |
# Convert logits to probabilities | |
probs = torch.softmax(next_token_logits, dim=-1) | |
# Sample next tokens | |
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) | |
# Update sequences | |
input_ids = torch.cat([input_ids, next_tokens.unsqueeze(-1)], dim=-1) | |
# Check for EOS tokens | |
if eos_token_id is not None: | |
unfinished = (next_tokens != eos_token_id).long() * unfinished_sequences | |
unfinished_sequences = unfinished | |
if unfinished_sequences.max() == 0: | |
break | |
# Pad sequences if requested | |
if pad_token_id is not None and eos_token_id is not None: | |
input_ids = self._pad_sequences(input_ids, eos_token_id, pad_token_id) | |
return input_ids | |
def _apply_repetition_penalty(self, logits, sequences, penalty): | |
"""Applies repetition penalty to logits""" | |
score = torch.gather(logits, 1, sequences) | |
score = torch.where(score < 0, score * penalty, score / penalty) | |
logits.scatter_(1, sequences, score) | |
return logits | |
def _pad_sequences(self, sequences, eos_token_id, pad_token_id): | |
"""Replace tokens after EOS with pad token""" | |
# Create mask of positions after EOS | |
eos_positions = (sequences == eos_token_id).int().argmax(dim=-1) | |
padding_mask = torch.arange(sequences.size(1), device=sequences.device) > eos_positions.unsqueeze(-1) | |
# Apply padding | |
sequences[padding_mask] = pad_token_id | |
return sequences | |
# Helper function for rotary embeddings | |
def apply_rotary_pos_emb(q, k, cos, sin): | |
q_embed = (q * cos) + (rotate_half(q) * sin) | |
k_embed = (k * cos) + (rotate_half(k) * sin) | |
return q_embed, k_embed | |
def rotate_half(x): | |
x1 = x[..., : x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2 :] | |
return torch.cat((-x2, x1), dim=-1) | |
''' | |
# Usage | |
config = CustomConfig() | |
model = CustomLLM(config) | |
# Verify parameters | |
total_params = sum(p.numel() for p in model.parameters()) | |
print(f"Total parameters: {total_params/1e6:.2f}M") # Should output ~135.00M | |
print(model) | |
# Test forward pass after fix | |
input_ids = torch.randint(0, config.vocab_size, (1, 256)) | |
output = model(input_ids) | |
print(output.shape) # Expected output: (1, 256, 49152) | |
# Initialize model | |
config = CustomConfig() | |
model = CustomLLM(config) | |
# Generate text | |
prompt = torch.tensor([[config.bos_token_id]]) # Start token | |
generated = model.generate( | |
prompt, | |
max_new_tokens=50, | |
temperature=0.7, | |
top_p=0.9, | |
eos_token_id=config.eos_token_id, | |
pad_token_id=config.pad_token_id | |
) | |
from transformers import AutoTokenizer | |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer") | |
tokenizer.pad_token = tokenizer.eos_token # For padding | |
# Decode tokens | |
generated_text = tokenizer.decode(generated[0].tolist()) | |
print(prompt) | |
print(generated_text) | |
''' | |