Shriti09's picture
Upload 4 files
7970870 verified
import torch
import torch.nn as nn
import math
from transformers.modeling_outputs import CausalLMOutputWithPast
# 1. Custom Configuration Class
class CustomConfig:
def __init__(self):
# Architecture Parameters
self.vocab_size = 49152
self.hidden_size = 576 # d_model
self.intermediate_size = 1536 # FFN dimension
self.num_hidden_layers = 30 # Number of decoder layers
self.num_attention_heads = 9 # Query heads
self.num_key_value_heads = 3 # Key/Value heads
self.max_position_embeddings = 2048
self.rms_norm_eps = 1e-5
self.rope_theta = 10000.0 # Rotary embedding base
# Tokenizer/Generation Params
self.pad_token_id = None
self.bos_token_id = 0
self.eos_token_id = 0
def to_dict(self):
# Serialize the config parameters
return {k: v for k, v in self.__dict__.items() if not k.startswith("_")}
# 2. Custom RMS Normalization
class CustomRMSNorm(nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.weight = nn.Parameter(torch.ones(dim))
self.eps = eps
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
return self.weight * self._norm(x.float()).type_as(x)
# 3. Rotary Positional Embeddings
class RotaryEmbedding(nn.Module):
def __init__(self, dim, max_seq_len=2048, theta=10000.0):
super().__init__()
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
self._set_cos_sin_cache(max_seq_len)
def _set_cos_sin_cache(self, seq_len):
t = torch.arange(seq_len, device=self.inv_freq.device)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :])
self.register_buffer("sin_cached", emb.sin()[None, None, :, :])
def forward(self, x, seq_len):
if seq_len > self.cos_cached.shape[2]:
self._set_cos_sin_cache(seq_len)
return self.cos_cached[:, :, :seq_len], self.sin_cached[:, :, :seq_len]
# 4. Attention Layer with Grouped Query Attention
class CustomAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_kv_heads = config.num_key_value_heads
# Projections
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
# Rotary embeddings
self.rotary_emb = RotaryEmbedding(
self.head_dim,
max_seq_len=config.max_position_embeddings,
theta=config.rope_theta
)
def forward(self, x, attention_mask=None):
batch_size, seq_len, _ = x.shape
# Project queries/keys/values
q = self.q_proj(x)
k = self.k_proj(x)
v = self.v_proj(x)
# Reshape for attention computation
q = q.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
k = k.view(batch_size, seq_len, self.num_kv_heads, self.head_dim).transpose(1, 2)
v = v.view(batch_size, seq_len, self.num_kv_heads, self.head_dim).transpose(1, 2)
# Apply rotary embeddings
cos, sin = self.rotary_emb(x, seq_len=seq_len)
q, k = apply_rotary_pos_emb(q, k, cos, sin)
# Repeat keys and values to match the number of query heads
repeat_factor = self.num_heads // self.num_kv_heads
k = k.repeat_interleave(repeat_factor, dim=1)
v = v.repeat_interleave(repeat_factor, dim=1)
# Attention scores
attn_weights = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(self.head_dim)
# Apply attention mask
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
attn_weights = torch.softmax(attn_weights, dim=-1)
attn_output = torch.matmul(attn_weights, v)
# Reshape and project back
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(batch_size, seq_len, self.hidden_size)
return self.o_proj(attn_output)
# 5. MLP Layer
class CustomMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.act_fn = nn.SiLU()
def forward(self, x):
gate = self.act_fn(self.gate_proj(x))
up = self.up_proj(x)
return self.down_proj(gate * up)
# 6. Transformer Decoder Layer
class DecoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.self_attn = CustomAttention(config)
self.mlp = CustomMLP(config)
self.input_norm = CustomRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attn_norm = CustomRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(self, x, attention_mask=None):
# Self-attention
residual = x
x = self.input_norm(x)
x = self.self_attn(x, attention_mask)
x = residual + x
# MLP
residual = x
x = self.post_attn_norm(x)
x = self.mlp(x)
x = residual + x
return x
# 7. Full Model
class CustomLLM(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
self.norm = CustomRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.lm_head.weight = self.embed_tokens.weight # Tie the weights To reduce param
# Initialize weights
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, input_ids, attention_mask=None, labels=None):
x = self.embed_tokens(input_ids)
batch_size, seq_len = input_ids.shape
# Create causal mask
causal_mask = torch.full((seq_len, seq_len), float("-inf"), device=x.device)
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask = causal_mask[None, None, :, :] # Shape: [1, 1, seq_len, seq_len]
# Combine with padding mask
if attention_mask is not None:
padding_mask = (1.0 - attention_mask.float()) * torch.finfo(x.dtype).min
padding_mask = padding_mask.view(batch_size, 1, 1, seq_len)
combined_mask = causal_mask + padding_mask
else:
combined_mask = causal_mask
# Process through decoder layers
for layer in self.layers:
x = layer(x, attention_mask=combined_mask)
x = self.norm(x)
logits = self.lm_head(x)
loss = None
if labels is not None:
# Shift logits and labels for causal LM
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=None,
hidden_states=None,
attentions=None,
)
def generate(
self,
input_ids: torch.Tensor,
max_new_tokens: int = 100,
temperature: float = 1.0,
top_k: int = None,
top_p: float = None,
repetition_penalty: float = 1.0,
eos_token_id: int = None,
pad_token_id: int = None,
):
"""
Generates text using various decoding strategies.
Args:
input_ids: Input token IDs of shape (batch_size, seq_len)
max_new_tokens: Maximum number of tokens to generate
temperature: Sampling temperature (higher = more random)
top_k: Top-k sampling cutoff
top_p: Nucleus sampling cutoff
repetition_penalty: Penalty for repeated tokens (1.0 = no penalty)
eos_token_id: Stop generation when this token is produced
pad_token_id: Padding token ID for sequence termination
Returns:
Generated sequence of token IDs
"""
# Ensure model is in eval mode
self.eval()
# Move inputs to model device
input_ids = input_ids.to(self.embed_tokens.weight.device)
batch_size = input_ids.size(0)
# Storage for generated sequences
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
past_key_values = None # Could implement KV caching here for efficiency
for _ in range(max_new_tokens):
# Forward pass (only compute last logits for efficiency)
with torch.no_grad():
outputs = self(input_ids)
next_token_logits = outputs.logits[:, -1, :]
# Repetition penalty
if repetition_penalty != 1.0:
next_token_logits = self._apply_repetition_penalty(
next_token_logits, input_ids, repetition_penalty
)
# Temperature scaling
if temperature != 1.0:
next_token_logits = next_token_logits / temperature
# Top-k filtering
if top_k is not None and top_k > 0:
top_k_values, _ = torch.topk(next_token_logits, top_k)
min_top_k = top_k_values[:, -1].unsqueeze(-1)
next_token_logits = torch.where(
next_token_logits < min_top_k,
torch.tensor(-float('inf')).to(next_token_logits.device),
next_token_logits
)
# Top-p (nucleus) sampling
if top_p is not None and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above threshold
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
next_token_logits[indices_to_remove] = -float('inf')
# Convert logits to probabilities
probs = torch.softmax(next_token_logits, dim=-1)
# Sample next tokens
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
# Update sequences
input_ids = torch.cat([input_ids, next_tokens.unsqueeze(-1)], dim=-1)
# Check for EOS tokens
if eos_token_id is not None:
unfinished = (next_tokens != eos_token_id).long() * unfinished_sequences
unfinished_sequences = unfinished
if unfinished_sequences.max() == 0:
break
# Pad sequences if requested
if pad_token_id is not None and eos_token_id is not None:
input_ids = self._pad_sequences(input_ids, eos_token_id, pad_token_id)
return input_ids
def _apply_repetition_penalty(self, logits, sequences, penalty):
"""Applies repetition penalty to logits"""
score = torch.gather(logits, 1, sequences)
score = torch.where(score < 0, score * penalty, score / penalty)
logits.scatter_(1, sequences, score)
return logits
def _pad_sequences(self, sequences, eos_token_id, pad_token_id):
"""Replace tokens after EOS with pad token"""
# Create mask of positions after EOS
eos_positions = (sequences == eos_token_id).int().argmax(dim=-1)
padding_mask = torch.arange(sequences.size(1), device=sequences.device) > eos_positions.unsqueeze(-1)
# Apply padding
sequences[padding_mask] = pad_token_id
return sequences
# Helper function for rotary embeddings
def apply_rotary_pos_emb(q, k, cos, sin):
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
'''
# Usage
config = CustomConfig()
model = CustomLLM(config)
# Verify parameters
total_params = sum(p.numel() for p in model.parameters())
print(f"Total parameters: {total_params/1e6:.2f}M") # Should output ~135.00M
print(model)
# Test forward pass after fix
input_ids = torch.randint(0, config.vocab_size, (1, 256))
output = model(input_ids)
print(output.shape) # Expected output: (1, 256, 49152)
# Initialize model
config = CustomConfig()
model = CustomLLM(config)
# Generate text
prompt = torch.tensor([[config.bos_token_id]]) # Start token
generated = model.generate(
prompt,
max_new_tokens=50,
temperature=0.7,
top_p=0.9,
eos_token_id=config.eos_token_id,
pad_token_id=config.pad_token_id
)
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer")
tokenizer.pad_token = tokenizer.eos_token # For padding
# Decode tokens
generated_text = tokenizer.decode(generated[0].tolist())
print(prompt)
print(generated_text)
'''