Spaces:
Runtime error
Runtime error
Shrikrishna
commited on
Commit
•
3f61e0e
1
Parent(s):
5174f1c
Update app.py
Browse files
app.py
CHANGED
@@ -45,3 +45,47 @@ st.pyplot(fig)
|
|
45 |
data_training = pd.DataFrame(df["Close"][0:int(len(df)*0.70)])
|
46 |
data_testing = pd.DataFrame(df["Close"][int(len(df)*0.70):int(len(df))])
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
data_training = pd.DataFrame(df["Close"][0:int(len(df)*0.70)])
|
46 |
data_testing = pd.DataFrame(df["Close"][int(len(df)*0.70):int(len(df))])
|
47 |
|
48 |
+
#Scaling
|
49 |
+
scaler = MinMaxScaler(feature_range=(0,1))
|
50 |
+
data_training_arr = scaler.fit_transform(data_training)
|
51 |
+
|
52 |
+
#Split data in x_train and y_train
|
53 |
+
x_train = []
|
54 |
+
y_train = []
|
55 |
+
for i in range(100, data_training_arr.shape[0]):
|
56 |
+
x_train.append(data_training_arr[i-100: i])
|
57 |
+
y_train.append(data_training_arr[i, 0])
|
58 |
+
x_train, y_train = np.array(x_train), np.array(y_train)
|
59 |
+
|
60 |
+
#Load the model
|
61 |
+
model = load_model("keras_model.h5")
|
62 |
+
|
63 |
+
past_100_days = data_training.tail(100)
|
64 |
+
final_test_df = past_100_days._append(data_testing, ignore_index=True)
|
65 |
+
input_data = scaler.fit_transform(final_test_df)
|
66 |
+
|
67 |
+
#Split data in x_test and y_test
|
68 |
+
x_test = []
|
69 |
+
y_test = []
|
70 |
+
|
71 |
+
for i in range(100, input_data.shape[0]):
|
72 |
+
x_test.append(input_data[i-100: i])
|
73 |
+
y_test.append(input_data[i, 0])
|
74 |
+
|
75 |
+
x_test, y_test = np.array(x_test), np.array(y_test)
|
76 |
+
|
77 |
+
y_predicted = model.predict(x_test)
|
78 |
+
|
79 |
+
sc = scaler.scale_
|
80 |
+
scale_factor = 1/sc[0]
|
81 |
+
|
82 |
+
y_predicted = y_predicted * scale_factor
|
83 |
+
y_test = y_test * scale_factor
|
84 |
+
|
85 |
+
plt.figure(figsize=(12,6))
|
86 |
+
plt.plot(y_test, 'blue', label="Original Stock Price")
|
87 |
+
plt.plot(y_predicted, 'red', label="Predicted Stock Price")
|
88 |
+
plt.xlabel('Time')
|
89 |
+
plt.ylabel('Price')
|
90 |
+
plt.legend()
|
91 |
+
plt.show()
|