Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pickle | |
import base64 | |
import json | |
import numpy as np | |
import cv2 | |
import pywt | |
import joblib | |
from PIL import Image | |
__class_name_to_number = {} | |
__class_number_to_name = {} | |
__model = None | |
st.header("Welcome to Indian Cricketers Classifier!") | |
col1,col2,col3,col4,col5,col6 = st.columns(6) | |
with col1: | |
dhoni = cv2.imread("dhoni.jpg") | |
st.image(dhoni,width=100, caption='MS Dhoni') | |
with col2: | |
dravid = cv2.imread("rahul.jpg") | |
st.image(dravid,width=100, caption='Rahul Dravid') | |
with col3: | |
sachin = cv2.imread("sachin.jpg") | |
st.image(sachin,width=100, caption='Sachin Tendulkar') | |
with col4: | |
ganguly = cv2.imread("ganguly.jpg") | |
st.image(ganguly,width=100, caption='Saurav Ganguly') | |
with col5: | |
virat = cv2.imread("virat.jpg") | |
st.image(virat,width=100, caption='Virat Kohli') | |
with col5: | |
sehwag = cv2.imread("sehwag.jpg") | |
st.image(sehwag,width=100, caption='Virendra Sehwag') | |
def classify_image(image_base64_data, file_path=None): | |
imgs = get_cropped_image_if_2_eyes_new(file_path, image_base64_data) | |
result = [] | |
for img in imgs: | |
scalled_raw_img = cv2.resize(img, (32, 32)) | |
img_har = w2d(img, 'db1', 5) | |
scalled_img_har = cv2.resize(img_har, (32, 32)) | |
combined_img = np.vstack((scalled_raw_img.reshape(32 * 32 * 3, 1), scalled_img_har.reshape(32 * 32, 1))) | |
len_image_array = 32*32*3 + 32*32 | |
final = combined_img.reshape(1,len_image_array).astype(float) | |
result.append({ | |
'class': class_number_to_name(__model.predict(final)[0]), | |
'class_probability': np.around(__model.predict_proba(final)*100,2).tolist()[0], | |
'class_dictionary': __class_name_to_number | |
}) | |
return result | |
def get_cropped_image_if_2_eyes_new(file_path, image_base64_data): | |
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') | |
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml') | |
if file_path: | |
img = cv2.imread(file_path) | |
#st.image(img,width=150, caption='Uploaded Image') | |
else: | |
img = get_cv2_image_from_base64_string(image_base64_data) | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
faces = face_cascade.detectMultiScale(gray, 1.3, 5) | |
cropped_faces = [] | |
for (x,y,w,h) in faces: | |
roi_gray = gray[y:y+h, x:x+w] | |
roi_color = img[y:y+h, x:x+w] | |
eyes = eye_cascade.detectMultiScale(roi_gray) | |
if len(eyes) >= 2: | |
cropped_faces.append(roi_color) | |
return cropped_faces | |
def w2d(img, mode='haar', level=1): | |
imArray = img | |
#Datatype conversions | |
#convert to grayscale | |
imArray = cv2.cvtColor( imArray,cv2.COLOR_RGB2GRAY ) | |
#convert to float | |
imArray = np.float32(imArray) | |
imArray /= 255; | |
# compute coefficients | |
coeffs=pywt.wavedec2(imArray, mode, level=level) | |
#Process Coefficients | |
coeffs_H=list(coeffs) | |
coeffs_H[0] *= 0; | |
# reconstruction | |
imArray_H=pywt.waverec2(coeffs_H, mode); | |
imArray_H *= 255; | |
imArray_H = np.uint8(imArray_H) | |
return imArray_H | |
def get_cv2_image_from_base64_string(b64str): | |
''' | |
credit: https://stackoverflow.com/questions/33754935/read-a-base-64-encoded-image-from-memory-using-opencv-python-library | |
:param uri: | |
:return: | |
''' | |
encoded_data = b64str.split(',')[1] | |
nparr = np.frombuffer(base64.b64decode(encoded_data), np.uint8) | |
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR) | |
return img | |
def load_saved_artifacts(): | |
#print("loading saved artifacts...start") | |
global __class_name_to_number | |
global __class_number_to_name | |
with open("class_cri_dictionary.json", "r") as f: | |
__class_name_to_number = json.load(f) | |
__class_number_to_name = {v:k for k,v in __class_name_to_number.items()} | |
global __model | |
if __model is None: | |
__model = joblib.load('cri_saved_model.pkl') | |
#st.text("loading saved artifacts...done") | |
return True | |
def class_number_to_name(class_num): | |
return __class_number_to_name[class_num] | |
def get_b64_test_image_for_virat(): | |
with open("b64.txt") as f: | |
return f.read() | |
def save_uploaded_image(uploaded_image): | |
try: | |
with open(uploaded_image.name, 'wb') as f: | |
f.write(uploaded_image.getbuffer()) | |
return {"complete":True, "filename":uploaded_image.name} | |
except: | |
return {"complete":False, "filename":""} | |
uploaded_image = st.file_uploader('Choose an image') | |
if uploaded_image is not None: | |
# save the image in a directory | |
image_dict = save_uploaded_image(uploaded_image) | |
if image_dict["complete"]: | |
display_image = image_dict["filename"] | |
st.header("Image Uploded!, Processing...") | |
if load_saved_artifacts(): | |
img = cv2.imread(display_image) | |
img = cv2.resize(img, (130, 130)) | |
result = classify_image(get_b64_test_image_for_virat(), display_image) | |
st.text(result[0]) | |