Shriharshan
commited on
Commit
·
0273271
1
Parent(s):
efb9c5f
Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,38 @@
|
|
1 |
-
# Image captioning with ViT+GPT2
|
2 |
from PIL import Image
|
3 |
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, PreTrainedTokenizerFast
|
4 |
import requests
|
|
|
5 |
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
6 |
-
|
7 |
tokenizer = PreTrainedTokenizerFast.from_pretrained("distilgpt2")
|
8 |
|
9 |
-
|
10 |
-
#url = 'https://d2gp644kobdlm6.cloudfront.net/wp-content/uploads/2016/06/bigstock-Shocked-and-surprised-boy-on-t-113798588-300x212.jpg'
|
11 |
-
# with Image.open(requests.get(url, stream=True).raw) as img:
|
12 |
-
# pixel_values = vit_feature_extactor(images=img, return_tensors="pt").pixel_values
|
13 |
-
# encoder_outputs = model.generate(pixel_values.to('cpu'),num_beams = 5)
|
14 |
-
# generated_senetences = tokenizer.batch_decode(encoder_outputs, skip_special_tokens=True,)
|
15 |
-
# generated_senetences
|
16 |
-
# generated_senetences[0].split(".")[0]
|
17 |
-
|
18 |
-
|
19 |
def vit2distilgpt2(img):
|
20 |
-
pixel_values =
|
21 |
-
encoder_outputs =
|
22 |
-
|
23 |
|
24 |
-
return
|
25 |
|
26 |
import gradio as gr
|
|
|
27 |
inputs = [
|
28 |
-
gr.inputs.Image(type="pil",label="Original Images")
|
29 |
]
|
30 |
|
31 |
outputs = [
|
32 |
-
gr.outputs.Textbox(label
|
|
|
|
|
33 |
]
|
34 |
|
35 |
title = "Image Captioning using ViT + GPT2"
|
36 |
-
description = "ViT and GPT2 are used to generate Image Caption for the uploaded image.COCO DataSet is used for Training"
|
37 |
examples = [
|
38 |
["Image1.png"],
|
39 |
["Image2.png"],
|
40 |
["Image3.png"]
|
41 |
]
|
42 |
|
43 |
-
|
44 |
gr.Interface(
|
45 |
vit2distilgpt2,
|
46 |
inputs,
|
@@ -49,4 +41,4 @@ gr.Interface(
|
|
49 |
description=description,
|
50 |
examples=examples,
|
51 |
theme="huggingface",
|
52 |
-
).launch(debug=True, enable_queue=True)
|
|
|
|
|
1 |
from PIL import Image
|
2 |
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, PreTrainedTokenizerFast
|
3 |
import requests
|
4 |
+
|
5 |
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
6 |
+
vit_feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k")
|
7 |
tokenizer = PreTrainedTokenizerFast.from_pretrained("distilgpt2")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
def vit2distilgpt2(img):
|
10 |
+
pixel_values = vit_feature_extractor(images=img, return_tensors="pt").pixel_values
|
11 |
+
encoder_outputs = model.generate(pixel_values.to('cpu'), num_beams=5, num_return_sequences=3)
|
12 |
+
generated_sentences = tokenizer.batch_decode(encoder_outputs, skip_special_tokens=True)
|
13 |
|
14 |
+
return generated_sentences
|
15 |
|
16 |
import gradio as gr
|
17 |
+
|
18 |
inputs = [
|
19 |
+
gr.inputs.Image(type="pil", label="Original Images")
|
20 |
]
|
21 |
|
22 |
outputs = [
|
23 |
+
gr.outputs.Textbox(label="Caption 1"),
|
24 |
+
gr.outputs.Textbox(label="Caption 2"),
|
25 |
+
gr.outputs.Textbox(label="Caption 3")
|
26 |
]
|
27 |
|
28 |
title = "Image Captioning using ViT + GPT2"
|
29 |
+
description = "ViT and GPT2 are used to generate Image Caption for the uploaded image. COCO DataSet is used for Training"
|
30 |
examples = [
|
31 |
["Image1.png"],
|
32 |
["Image2.png"],
|
33 |
["Image3.png"]
|
34 |
]
|
35 |
|
|
|
36 |
gr.Interface(
|
37 |
vit2distilgpt2,
|
38 |
inputs,
|
|
|
41 |
description=description,
|
42 |
examples=examples,
|
43 |
theme="huggingface",
|
44 |
+
).launch(debug=True, enable_queue=True)
|