Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,17 +13,28 @@ import gradio as gr
|
|
13 |
from transformers import TextIteratorStreamer, AutoModelForSeq2SeqLM, AutoTokenizer, AutoConfig
|
14 |
from huggingface_hub import InferenceClient
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# Define device and load model and tokenizer
|
17 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
MODEL_NAME = "microsoft/Phi-3-mini-4k-instruct"
|
19 |
|
|
|
|
|
|
|
20 |
# Load model and tokenizer, with specific handling for the Phi-3 model
|
21 |
try:
|
|
|
22 |
config = AutoConfig.from_pretrained(MODEL_NAME)
|
23 |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME, config=config).to(DEVICE)
|
24 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
|
|
25 |
except ValueError as e:
|
26 |
-
|
27 |
# Fallback to using InferenceClient from Hugging Face Hub
|
28 |
client = InferenceClient(model=MODEL_NAME)
|
29 |
model = None
|
@@ -65,6 +76,7 @@ def extract_text_from_webpage(html_content):
|
|
65 |
|
66 |
# Function to perform a Google search and return the results
|
67 |
def search(term, num_results=2, lang="en", timeout=5, safe="active", ssl_verify=None):
|
|
|
68 |
escaped_term = urllib.parse.quote_plus(term)
|
69 |
start = 0
|
70 |
all_results = []
|
@@ -72,46 +84,52 @@ def search(term, num_results=2, lang="en", timeout=5, safe="active", ssl_verify=
|
|
72 |
|
73 |
with requests.Session() as session:
|
74 |
while start < num_results:
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
visible_text
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
111 |
return all_results
|
112 |
|
113 |
# Function to format the prompt for the language model
|
114 |
def format_prompt(user_prompt, chat_history):
|
|
|
115 |
prompt = "<s>"
|
116 |
for item in chat_history:
|
117 |
if isinstance(item, tuple):
|
@@ -119,6 +137,7 @@ def format_prompt(user_prompt, chat_history):
|
|
119 |
else:
|
120 |
prompt += f" [Image] "
|
121 |
prompt += f"[INST] {user_prompt} [/INST]"
|
|
|
122 |
return prompt
|
123 |
|
124 |
# Function for model inference
|
@@ -132,7 +151,9 @@ def model_inference(
|
|
132 |
repetition_penalty,
|
133 |
top_p,
|
134 |
):
|
|
|
135 |
if not isinstance(user_prompt, dict):
|
|
|
136 |
return "Invalid input format. Expected a dictionary."
|
137 |
|
138 |
if "files" not in user_prompt:
|
@@ -140,6 +161,7 @@ def model_inference(
|
|
140 |
|
141 |
if not user_prompt["files"]:
|
142 |
if web_search:
|
|
|
143 |
web_results = search(user_prompt["text"])
|
144 |
web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
|
145 |
formatted_prompt = format_prompt(f"{user_prompt['text']} [WEB] {web2}", chat_history)
|
@@ -156,6 +178,7 @@ def model_inference(
|
|
156 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
157 |
else:
|
158 |
response = client.generate(formatted_prompt)
|
|
|
159 |
return response
|
160 |
else:
|
161 |
formatted_prompt = format_prompt(user_prompt["text"], chat_history)
|
@@ -172,6 +195,7 @@ def model_inference(
|
|
172 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
173 |
else:
|
174 |
response = client.generate(formatted_prompt)
|
|
|
175 |
return response
|
176 |
else:
|
177 |
return "Image input not supported in this implementation."
|
@@ -235,10 +259,11 @@ chatbot = gr.Chatbot(
|
|
235 |
|
236 |
# Define Gradio interface
|
237 |
def chat_interface(user_input, history, web_search, decoding_strategy, temperature, max_new_tokens, repetition_penalty, top_p):
|
238 |
-
|
239 |
-
|
|
|
240 |
response = model_inference(
|
241 |
-
|
242 |
history,
|
243 |
web_search,
|
244 |
decoding_strategy,
|
@@ -247,7 +272,8 @@ def chat_interface(user_input, history, web_search, decoding_strategy, temperatu
|
|
247 |
repetition_penalty,
|
248 |
top_p,
|
249 |
)
|
250 |
-
history.append((user_input, response))
|
|
|
251 |
return history, history
|
252 |
|
253 |
# Create Gradio interface
|
@@ -272,4 +298,5 @@ interface = gr.Interface(
|
|
272 |
)
|
273 |
|
274 |
if __name__ == "__main__":
|
|
|
275 |
interface.launch()
|
|
|
13 |
from transformers import TextIteratorStreamer, AutoModelForSeq2SeqLM, AutoTokenizer, AutoConfig
|
14 |
from huggingface_hub import InferenceClient
|
15 |
|
16 |
+
import logging
|
17 |
+
|
18 |
+
# Set up logging
|
19 |
+
logging.basicConfig(level=logging.DEBUG)
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
# Define device and load model and tokenizer
|
23 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
24 |
MODEL_NAME = "microsoft/Phi-3-mini-4k-instruct"
|
25 |
|
26 |
+
# Update transformers library
|
27 |
+
!pip install --upgrade transformers
|
28 |
+
|
29 |
# Load model and tokenizer, with specific handling for the Phi-3 model
|
30 |
try:
|
31 |
+
logger.debug("Attempting to load the model and tokenizer")
|
32 |
config = AutoConfig.from_pretrained(MODEL_NAME)
|
33 |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME, config=config).to(DEVICE)
|
34 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
35 |
+
logger.debug("Model and tokenizer loaded successfully")
|
36 |
except ValueError as e:
|
37 |
+
logger.error(f"Error loading model: {e}")
|
38 |
# Fallback to using InferenceClient from Hugging Face Hub
|
39 |
client = InferenceClient(model=MODEL_NAME)
|
40 |
model = None
|
|
|
76 |
|
77 |
# Function to perform a Google search and return the results
|
78 |
def search(term, num_results=2, lang="en", timeout=5, safe="active", ssl_verify=None):
|
79 |
+
logger.debug(f"Starting search for term: {term}")
|
80 |
escaped_term = urllib.parse.quote_plus(term)
|
81 |
start = 0
|
82 |
all_results = []
|
|
|
84 |
|
85 |
with requests.Session() as session:
|
86 |
while start < num_results:
|
87 |
+
try:
|
88 |
+
resp = session.get(
|
89 |
+
url="https://www.google.com/search",
|
90 |
+
headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"},
|
91 |
+
params={
|
92 |
+
"q": term,
|
93 |
+
"num": num_results - start,
|
94 |
+
"hl": lang,
|
95 |
+
"start": start,
|
96 |
+
"safe": safe,
|
97 |
+
},
|
98 |
+
timeout=timeout,
|
99 |
+
verify=ssl_verify,
|
100 |
+
)
|
101 |
+
resp.raise_for_status()
|
102 |
+
soup = BeautifulSoup(resp.text, "html.parser")
|
103 |
+
result_block = soup.find_all("div", attrs={"class": "g"})
|
104 |
+
if not result_block:
|
105 |
+
start += 1
|
106 |
+
continue
|
107 |
+
for result in result_block:
|
108 |
+
link = result.find("a", href=True)
|
109 |
+
if link:
|
110 |
+
link = link["href"]
|
111 |
+
try:
|
112 |
+
webpage = session.get(link, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"})
|
113 |
+
webpage.raise_for_status()
|
114 |
+
visible_text = extract_text_from_webpage(webpage.text)
|
115 |
+
if len(visible_text) > max_chars_per_page:
|
116 |
+
visible_text = visible_text[:max_chars_per_page] + "..."
|
117 |
+
all_results.append({"link": link, "text": visible_text})
|
118 |
+
except requests.exceptions.RequestException as e:
|
119 |
+
logger.error(f"Error fetching or processing {link}: {e}")
|
120 |
+
all_results.append({"link": link, "text": None})
|
121 |
+
else:
|
122 |
+
all_results.append({"link": None, "text": None})
|
123 |
+
start += len(result_block)
|
124 |
+
except Exception as e:
|
125 |
+
logger.error(f"Error during search: {e}")
|
126 |
+
break
|
127 |
+
logger.debug(f"Search results: {all_results}")
|
128 |
return all_results
|
129 |
|
130 |
# Function to format the prompt for the language model
|
131 |
def format_prompt(user_prompt, chat_history):
|
132 |
+
logger.debug(f"Formatting prompt with user prompt: {user_prompt} and chat history: {chat_history}")
|
133 |
prompt = "<s>"
|
134 |
for item in chat_history:
|
135 |
if isinstance(item, tuple):
|
|
|
137 |
else:
|
138 |
prompt += f" [Image] "
|
139 |
prompt += f"[INST] {user_prompt} [/INST]"
|
140 |
+
logger.debug(f"Formatted prompt: {prompt}")
|
141 |
return prompt
|
142 |
|
143 |
# Function for model inference
|
|
|
151 |
repetition_penalty,
|
152 |
top_p,
|
153 |
):
|
154 |
+
logger.debug(f"Starting model inference with user prompt: {user_prompt}, chat history: {chat_history}, web_search: {web_search}")
|
155 |
if not isinstance(user_prompt, dict):
|
156 |
+
logger.error("Invalid input format. Expected a dictionary.")
|
157 |
return "Invalid input format. Expected a dictionary."
|
158 |
|
159 |
if "files" not in user_prompt:
|
|
|
161 |
|
162 |
if not user_prompt["files"]:
|
163 |
if web_search:
|
164 |
+
logger.debug("Performing web search")
|
165 |
web_results = search(user_prompt["text"])
|
166 |
web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
|
167 |
formatted_prompt = format_prompt(f"{user_prompt['text']} [WEB] {web2}", chat_history)
|
|
|
178 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
179 |
else:
|
180 |
response = client.generate(formatted_prompt)
|
181 |
+
logger.debug(f"Model response: {response}")
|
182 |
return response
|
183 |
else:
|
184 |
formatted_prompt = format_prompt(user_prompt["text"], chat_history)
|
|
|
195 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
196 |
else:
|
197 |
response = client.generate(formatted_prompt)
|
198 |
+
logger.debug(f"Model response: {response}")
|
199 |
return response
|
200 |
else:
|
201 |
return "Image input not supported in this implementation."
|
|
|
259 |
|
260 |
# Define Gradio interface
|
261 |
def chat_interface(user_input, history, web_search, decoding_strategy, temperature, max_new_tokens, repetition_penalty, top_p):
|
262 |
+
logger.debug(f"Chat interface called with user_input: {user_input}")
|
263 |
+
if isinstance(user_input, str):
|
264 |
+
user_input = {"text": user_input, "files": []}
|
265 |
response = model_inference(
|
266 |
+
user_input,
|
267 |
history,
|
268 |
web_search,
|
269 |
decoding_strategy,
|
|
|
272 |
repetition_penalty,
|
273 |
top_p,
|
274 |
)
|
275 |
+
history.append((user_input["text"], response))
|
276 |
+
logger.debug(f"Updated chat history: {history}")
|
277 |
return history, history
|
278 |
|
279 |
# Create Gradio interface
|
|
|
298 |
)
|
299 |
|
300 |
if __name__ == "__main__":
|
301 |
+
logger.debug("Launching Gradio interface")
|
302 |
interface.launch()
|