|
import fitz |
|
import gradio as gr |
|
import requests |
|
from bs4 import BeautifulSoup |
|
import urllib.parse |
|
import random |
|
import os |
|
from dotenv import load_dotenv |
|
import shutil |
|
import tempfile |
|
|
|
load_dotenv() |
|
|
|
|
|
HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_TOKEN") |
|
|
|
def clear_cache(): |
|
try: |
|
|
|
cache_dir = tempfile.gettempdir() |
|
shutil.rmtree(os.path.join(cache_dir, "gradio"), ignore_errors=True) |
|
|
|
|
|
|
|
if os.path.exists("output_summary.pdf"): |
|
os.remove("output_summary.pdf") |
|
|
|
|
|
|
|
print("Cache cleared successfully.") |
|
return "Cache cleared successfully." |
|
except Exception as e: |
|
print(f"Error clearing cache: {e}") |
|
return f"Error clearing cache: {e}" |
|
|
|
PREDEFINED_QUERIES = { |
|
"Recent Earnings": { |
|
"query": "{company} recent quarterly earnings", |
|
"instructions": "Provide the most recent quarterly earnings data for {company}. Include revenue, net income, and EPS. Specify the exact quarter and year." |
|
}, |
|
"Recent News": { |
|
"query": "{company} recent news", |
|
"instructions": "Summarize the most recent significant news about {company}. Focus on events that could impact the company's financial performance or stock price." |
|
}, |
|
"Credit Rating": { |
|
"query": "{company} current credit rating", |
|
"instructions": "Provide the most recent credit rating for {company}. Include the rating agency, the exact rating, and the date it was issued or last confirmed." |
|
}, |
|
"Earnings Call Transcript": { |
|
"query": "{company} most recent earnings call transcript", |
|
"instructions": "Summarize key points from {company}'s most recent earnings call. Include date of the call, major financial highlights, and any significant forward-looking statements." |
|
} |
|
} |
|
_useragent_list = [ |
|
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", |
|
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", |
|
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", |
|
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", |
|
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", |
|
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", |
|
] |
|
|
|
|
|
def extract_text_from_webpage(html): |
|
print("Extracting text from webpage...") |
|
soup = BeautifulSoup(html, 'html.parser') |
|
for script in soup(["script", "style"]): |
|
script.extract() |
|
text = soup.get_text() |
|
lines = (line.strip() for line in text.splitlines()) |
|
chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) |
|
text = '\n'.join(chunk for chunk in chunks if chunk) |
|
print(f"Extracted text length: {len(text)}") |
|
return text |
|
|
|
|
|
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None): |
|
"""Performs a Google search and returns the results.""" |
|
print(f"Searching for term: {term}") |
|
escaped_term = urllib.parse.quote_plus(term) |
|
start = 0 |
|
all_results = [] |
|
max_chars_per_page = 8000 |
|
|
|
with requests.Session() as session: |
|
while start < num_results: |
|
print(f"Fetching search results starting from: {start}") |
|
try: |
|
|
|
user_agent = random.choice(_useragent_list) |
|
headers = { |
|
'User-Agent': user_agent |
|
} |
|
print(f"Using User-Agent: {headers['User-Agent']}") |
|
|
|
resp = session.get( |
|
url="https://www.google.com/search", |
|
headers=headers, |
|
params={ |
|
"q": term, |
|
"num": num_results - start, |
|
"hl": lang, |
|
"start": start, |
|
"safe": safe, |
|
}, |
|
timeout=timeout, |
|
verify=ssl_verify, |
|
) |
|
resp.raise_for_status() |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching search results: {e}") |
|
break |
|
|
|
soup = BeautifulSoup(resp.text, "html.parser") |
|
result_block = soup.find_all("div", attrs={"class": "g"}) |
|
if not result_block: |
|
print("No more results found.") |
|
break |
|
for result in result_block: |
|
link = result.find("a", href=True) |
|
if link: |
|
link = link["href"] |
|
print(f"Found link: {link}") |
|
try: |
|
webpage = session.get(link, headers=headers, timeout=timeout) |
|
webpage.raise_for_status() |
|
visible_text = extract_text_from_webpage(webpage.text) |
|
if len(visible_text) > max_chars_per_page: |
|
visible_text = visible_text[:max_chars_per_page] + "..." |
|
all_results.append({"link": link, "text": visible_text}) |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching or processing {link}: {e}") |
|
all_results.append({"link": link, "text": None}) |
|
else: |
|
print("No link found in result.") |
|
all_results.append({"link": None, "text": None}) |
|
start += len(result_block) |
|
print(f"Total results fetched: {len(all_results)}") |
|
return all_results |
|
|
|
|
|
def format_prompt(query, search_results, instructions): |
|
formatted_results = "" |
|
for result in search_results: |
|
link = result["link"] |
|
text = result["text"] |
|
if link: |
|
formatted_results += f"URL: {link}\nContent: {text}\n{'-' * 80}\n" |
|
else: |
|
formatted_results += "No link found.\n" + '-' * 80 + '\n' |
|
|
|
prompt = f"""Instructions: {instructions} |
|
User Query: {query} |
|
|
|
Web Search Results: |
|
{formatted_results} |
|
|
|
Important: Provide a precise and factual response based solely on the information given above. Include specific dates, numbers, and sources where available. If exact information is not provided in the search results, clearly state that the information is not available in the given context. Do not make assumptions or provide information that is not directly supported by the search results. |
|
|
|
Assistant:""" |
|
return prompt |
|
|
|
|
|
def generate_text(input_text, temperature=0.3, repetition_penalty=1.2, top_p=0.9): |
|
print("Generating text using Hugging Face API...") |
|
endpoint = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3" |
|
headers = { |
|
"Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}", |
|
"Content-Type": "application/json" |
|
} |
|
data = { |
|
"inputs": input_text, |
|
"parameters": { |
|
"max_new_tokens": 1000, |
|
"temperature": temperature, |
|
"repetition_penalty": repetition_penalty, |
|
"top_p": top_p, |
|
"do_sample": True |
|
} |
|
} |
|
|
|
try: |
|
response = requests.post(endpoint, headers=headers, json=data) |
|
response.raise_for_status() |
|
|
|
|
|
try: |
|
json_data = response.json() |
|
except ValueError: |
|
print("Response is not JSON.") |
|
return None |
|
|
|
|
|
if isinstance(json_data, list): |
|
|
|
generated_text = json_data[0].get("generated_text") if json_data else None |
|
elif isinstance(json_data, dict): |
|
|
|
generated_text = json_data.get("generated_text") |
|
else: |
|
print("Unexpected response format.") |
|
return None |
|
|
|
if generated_text is not None: |
|
print("Text generation complete using Hugging Face API.") |
|
print(f"Generated text: {generated_text}") |
|
return generated_text |
|
else: |
|
print("Generated text not found in response.") |
|
return None |
|
|
|
except requests.exceptions.RequestException as e: |
|
print(f"Error generating text using Hugging Face API: {e}") |
|
return None |
|
|
|
|
|
def read_pdf(file_obj): |
|
with fitz.open(file_obj.name) as document: |
|
text = "" |
|
for page_num in range(document.page_count): |
|
page = document.load_page(page_num) |
|
text += page.get_text() |
|
return text |
|
|
|
|
|
def format_prompt_with_instructions(text, instructions): |
|
prompt = f"{instructions}{text}\n\nAssistant:" |
|
return prompt |
|
|
|
|
|
def save_text_to_pdf(text, output_path): |
|
print(f"Saving text to PDF at {output_path}...") |
|
doc = fitz.open() |
|
page = doc.new_page() |
|
|
|
|
|
margin = 50 |
|
page_width = page.rect.width |
|
page_height = page.rect.height |
|
text_width = page_width - 2 * margin |
|
text_height = page_height - 2 * margin |
|
|
|
|
|
font_size = 9 |
|
line_spacing = 1 * font_size |
|
fontname = "times-roman" |
|
|
|
|
|
paragraphs = text.split("\n") |
|
y_position = margin |
|
|
|
for paragraph in paragraphs: |
|
words = paragraph.split() |
|
current_line = "" |
|
|
|
for word in words: |
|
word = str(word) |
|
|
|
current_line_length = fitz.get_text_length(current_line + " " + word, fontsize=font_size, fontname=fontname) |
|
if current_line_length <= text_width: |
|
current_line += " " + word |
|
else: |
|
page.insert_text(fitz.Point(margin, y_position), current_line.strip(), fontsize=font_size, fontname=fontname) |
|
y_position += line_spacing |
|
if y_position + line_spacing > page_height - margin: |
|
page = doc.new_page() |
|
y_position = margin |
|
current_line = word |
|
|
|
|
|
page.insert_text(fitz.Point(margin, y_position), current_line.strip(), fontsize=font_size, fontname=fontname) |
|
y_position += line_spacing |
|
|
|
|
|
y_position += line_spacing |
|
if y_position + line_spacing > page_height - margin: |
|
page = doc.new_page() |
|
y_position = margin |
|
|
|
doc.save(output_path) |
|
print("PDF saved successfully.") |
|
|
|
|
|
def scrape_and_display(query, num_results, instructions, web_search=True, temperature=0.7, repetition_penalty=1.0, top_p=0.9): |
|
print(f"Scraping and displaying results for query: {query} with num_results: {num_results}") |
|
if web_search: |
|
search_results = google_search(query, num_results) |
|
formatted_prompt = format_prompt(query, search_results, instructions) |
|
generated_summary = generate_text(formatted_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) |
|
else: |
|
formatted_prompt = format_prompt_with_instructions(query, instructions) |
|
generated_summary = generate_text(formatted_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) |
|
print("Scraping and display complete.") |
|
if generated_summary: |
|
|
|
assistant_index = generated_summary.find("Assistant:") |
|
if assistant_index != -1: |
|
generated_summary = generated_summary[assistant_index:] |
|
else: |
|
generated_summary = "Assistant: No response generated." |
|
print(f"Generated summary: {generated_summary}") |
|
return generated_summary |
|
|
|
|
|
def gradio_interface(query, use_dashboard, use_pdf, pdf, num_results, custom_instructions, temperature, repetition_penalty, top_p, clear_cache_flag): |
|
if clear_cache_flag: |
|
return clear_cache() |
|
|
|
if use_dashboard: |
|
results = [] |
|
for query_type, query_info in PREDEFINED_QUERIES.items(): |
|
formatted_query = query_info['query'].format(company=query) |
|
formatted_instructions = query_info['instructions'].format(company=query) |
|
result = scrape_and_display(formatted_query, num_results=num_results, instructions=formatted_instructions, web_search=True, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) |
|
results.append(f"**{query_type}**\n\n{result}\n\n") |
|
generated_summary = "\n".join(results) |
|
elif use_pdf and pdf is not None: |
|
pdf_text = read_pdf(pdf) |
|
generated_summary = scrape_and_display(pdf_text, num_results=0, instructions=custom_instructions, web_search=False, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) |
|
else: |
|
generated_summary = scrape_and_display(query, num_results=num_results, instructions=custom_instructions, web_search=True, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) |
|
|
|
output_pdf_path = "output_summary.pdf" |
|
save_text_to_pdf(generated_summary, output_pdf_path) |
|
|
|
return generated_summary, output_pdf_path |
|
|
|
|
|
gr.Interface( |
|
fn=gradio_interface, |
|
inputs=[ |
|
gr.Textbox(label="Company Name or Query"), |
|
gr.Checkbox(label="Use Dashboard"), |
|
gr.Checkbox(label="Use PDF"), |
|
gr.File(label="Upload PDF"), |
|
gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Number of Results"), |
|
gr.Textbox(label="Custom Instructions"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Repetition Penalty"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top p"), |
|
gr.Checkbox(label="Clear Cache", visible=False) |
|
], |
|
outputs=["text", gr.File(label="Generated PDF")], |
|
title="Financial Analyst AI Assistant", |
|
description="Enter a company name to get a financial dashboard, or enter a custom query. Optionally, upload a PDF for analysis. Adjust parameters as needed for optimal results.", |
|
allow_flagging="never" |
|
).launch(share=True) |