Spaces:
Paused
Paused
Shreyas094
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -15,7 +15,6 @@ from langchain_core.documents import Document
|
|
15 |
from huggingface_hub import InferenceClient
|
16 |
import inspect
|
17 |
import logging
|
18 |
-
import shutil
|
19 |
|
20 |
|
21 |
# Set up basic configuration for logging
|
@@ -48,20 +47,18 @@ llama_parser = LlamaParse(
|
|
48 |
)
|
49 |
|
50 |
def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]:
|
51 |
-
|
52 |
-
shutil.copy(file.name, file_path)
|
53 |
-
|
54 |
if parser == "pypdf":
|
55 |
-
loader = PyPDFLoader(
|
56 |
return loader.load_and_split()
|
57 |
elif parser == "llamaparse":
|
58 |
try:
|
59 |
-
documents = llama_parser.load_data(
|
60 |
-
return [Document(page_content=doc.text, metadata={"source":
|
61 |
except Exception as e:
|
62 |
-
|
63 |
-
|
64 |
-
loader = PyPDFLoader(
|
65 |
return loader.load_and_split()
|
66 |
else:
|
67 |
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
|
@@ -75,7 +72,11 @@ def update_vectors(files, parser):
|
|
75 |
|
76 |
if not files:
|
77 |
logging.warning("No files provided for update_vectors")
|
78 |
-
return "Please upload at least one PDF file.", gr.
|
|
|
|
|
|
|
|
|
79 |
|
80 |
embed = get_embeddings()
|
81 |
total_chunks = 0
|
@@ -88,8 +89,9 @@ def update_vectors(files, parser):
|
|
88 |
logging.info(f"Loaded {len(data)} chunks from {file.name}")
|
89 |
all_data.extend(data)
|
90 |
total_chunks += len(data)
|
91 |
-
|
92 |
-
|
|
|
93 |
logging.info(f"Added new document to uploaded_documents: {file.name}")
|
94 |
else:
|
95 |
logging.info(f"Document already exists in uploaded_documents: {file.name}")
|
@@ -98,72 +100,53 @@ def update_vectors(files, parser):
|
|
98 |
|
99 |
logging.info(f"Total chunks processed: {total_chunks}")
|
100 |
|
101 |
-
if
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
database.add_documents(all_data)
|
106 |
-
else:
|
107 |
-
logging.info("Creating new FAISS database")
|
108 |
-
database = FAISS.from_documents(all_data, embed)
|
109 |
-
|
110 |
-
database.save_local("faiss_database")
|
111 |
-
logging.info("FAISS database saved")
|
112 |
-
|
113 |
-
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", gr.update(choices=[doc["name"] for doc in uploaded_documents], value=[doc["name"] for doc in uploaded_documents if doc["selected"]])
|
114 |
-
else:
|
115 |
-
return "No data was processed. Please check your files and try again.", gr.update(choices=[doc["name"] for doc in uploaded_documents], value=[doc["name"] for doc in uploaded_documents if doc["selected"]])
|
116 |
-
|
117 |
-
UPLOAD_FOLDER = "uploaded_files"
|
118 |
-
if not os.path.exists(UPLOAD_FOLDER):
|
119 |
-
os.makedirs(UPLOAD_FOLDER)
|
120 |
-
|
121 |
-
# Add this new function to handle file deletion
|
122 |
-
def delete_file(file_name):
|
123 |
-
global uploaded_documents
|
124 |
-
logging.info(f"Attempting to delete file: {file_name}")
|
125 |
-
|
126 |
-
# Remove the file from uploaded_documents
|
127 |
-
uploaded_documents = [doc for doc in uploaded_documents if doc["name"] != file_name]
|
128 |
-
|
129 |
-
# Remove the file from the file system if it exists
|
130 |
-
file_path = os.path.join(UPLOAD_FOLDER, file_name)
|
131 |
-
if os.path.exists(file_path):
|
132 |
-
os.remove(file_path)
|
133 |
-
logging.info(f"Deleted file: {file_path}")
|
134 |
else:
|
135 |
-
logging.
|
|
|
136 |
|
137 |
-
|
138 |
-
|
139 |
|
140 |
-
return
|
|
|
|
|
|
|
|
|
141 |
|
142 |
-
def
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
161 |
database.save_local("faiss_database")
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
167 |
|
168 |
def generate_chunked_response(prompt, model, max_tokens=10000, num_calls=3, temperature=0.2, should_stop=False):
|
169 |
print(f"Starting generate_chunked_response with {num_calls} calls")
|
@@ -265,14 +248,14 @@ class CitingSources(BaseModel):
|
|
265 |
...,
|
266 |
description="List of sources to cite. Should be an URL of the source."
|
267 |
)
|
268 |
-
def chatbot_interface(message, history, use_web_search, model, temperature, num_calls
|
269 |
if not message.strip():
|
270 |
return "", history
|
271 |
|
272 |
history = history + [(message, "")]
|
273 |
|
274 |
try:
|
275 |
-
for response in respond(message, history, model, temperature, num_calls, use_web_search
|
276 |
history[-1] = (message, response)
|
277 |
yield history
|
278 |
except gr.CancelledError:
|
@@ -295,67 +278,58 @@ def respond(message, history, model, temperature, num_calls, use_web_search, sel
|
|
295 |
logging.info(f"User Query: {message}")
|
296 |
logging.info(f"Model Used: {model}")
|
297 |
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
|
|
298 |
logging.info(f"Selected Documents: {selected_docs}")
|
299 |
|
300 |
try:
|
301 |
if use_web_search:
|
302 |
-
logging.info("Entering web search flow")
|
303 |
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
|
304 |
response = f"{main_content}\n\n{sources}"
|
305 |
-
|
|
|
306 |
yield response
|
307 |
else:
|
308 |
-
logging.info("Entering PDF search flow")
|
309 |
embed = get_embeddings()
|
310 |
if os.path.exists("faiss_database"):
|
311 |
-
logging.info("FAISS database exists, loading it")
|
312 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
313 |
retriever = database.as_retriever()
|
314 |
|
315 |
-
logging.info("Attempting to retrieve relevant documents")
|
316 |
-
try:
|
317 |
-
relevant_docs = retriever.invoke(message)
|
318 |
-
logging.info(f"Retrieved {len(relevant_docs)} relevant documents")
|
319 |
-
except Exception as e:
|
320 |
-
logging.error(f"Error retrieving relevant documents: {str(e)}")
|
321 |
-
yield f"An error occurred while retrieving relevant documents: {str(e)}"
|
322 |
-
return
|
323 |
-
|
324 |
# Filter relevant documents based on user selection
|
325 |
-
|
326 |
-
|
327 |
|
328 |
-
if not
|
329 |
-
logging.warning("No relevant information found in the selected documents")
|
330 |
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
331 |
return
|
332 |
|
333 |
-
context_str = "\n".join([doc.page_content for doc in
|
334 |
-
logging.info(f"Total context length: {len(context_str)}")
|
335 |
else:
|
336 |
-
logging.warning("No FAISS database found")
|
337 |
context_str = "No documents available."
|
338 |
yield "No documents available. Please upload PDF documents to answer questions."
|
339 |
return
|
340 |
|
341 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
342 |
-
|
343 |
for partial_response in get_response_from_cloudflare(prompt="", context=context_str, query=message, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
344 |
-
|
|
|
345 |
yield partial_response
|
346 |
else:
|
347 |
-
|
348 |
for partial_response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature):
|
349 |
-
|
|
|
350 |
yield partial_response
|
351 |
-
|
352 |
-
logging.info("Finished respond function")
|
353 |
except Exception as e:
|
354 |
-
logging.error(f"
|
355 |
-
|
|
|
|
|
|
|
|
|
|
|
356 |
|
357 |
-
|
358 |
-
logging.info(f"Selected docs: {selected_docs}")
|
359 |
|
360 |
def get_response_from_cloudflare(prompt, context, query, num_calls=3, temperature=0.2, search_type="pdf"):
|
361 |
headers = {
|
@@ -457,19 +431,11 @@ def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=
|
|
457 |
|
458 |
retriever = database.as_retriever()
|
459 |
logging.info(f"Retrieving relevant documents for query: {query}")
|
460 |
-
|
461 |
-
|
462 |
-
logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}")
|
463 |
-
except Exception as e:
|
464 |
-
logging.error(f"Error retrieving relevant documents: {str(e)}")
|
465 |
-
yield f"An error occurred while retrieving relevant documents: {str(e)}"
|
466 |
-
return
|
467 |
-
|
468 |
-
# Log the sources of relevant documents
|
469 |
-
logging.info(f"Sources of relevant documents: {[os.path.basename(doc.metadata['source']) for doc in relevant_docs]}")
|
470 |
|
471 |
# Filter relevant_docs based on selected documents
|
472 |
-
filtered_docs = [doc for doc in relevant_docs if
|
473 |
logging.info(f"Number of filtered documents: {len(filtered_docs)}")
|
474 |
|
475 |
if not filtered_docs:
|
@@ -478,7 +444,7 @@ def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=
|
|
478 |
return
|
479 |
|
480 |
for doc in filtered_docs:
|
481 |
-
logging.info(f"Document source: {
|
482 |
logging.info(f"Document content preview: {doc.page_content[:100]}...") # Log first 100 characters of each document
|
483 |
|
484 |
context_str = "\n".join([doc.page_content for doc in filtered_docs])
|
@@ -501,25 +467,18 @@ Write a detailed and complete response that answers the following user question:
|
|
501 |
response = ""
|
502 |
for i in range(num_calls):
|
503 |
logging.info(f"API call {i+1}/{num_calls}")
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
yield response # Yield partial response
|
515 |
-
logging.info(f"API call {i+1} completed successfully")
|
516 |
-
except Exception as e:
|
517 |
-
logging.error(f"Error in API call {i+1}: {str(e)}")
|
518 |
|
519 |
logging.info("Finished generating response")
|
520 |
-
logging.info(f"Relevant docs: {[doc.metadata['source'] for doc in relevant_docs]}")
|
521 |
-
logging.info(f"Selected docs: {selected_docs}")
|
522 |
-
logging.info(f"Filtered docs: {[doc.metadata['source'] for doc in filtered_docs]}")
|
523 |
|
524 |
def vote(data: gr.LikeData):
|
525 |
if data.liked:
|
@@ -543,8 +502,8 @@ uploaded_documents = []
|
|
543 |
|
544 |
def display_documents():
|
545 |
return gr.CheckboxGroup(
|
546 |
-
choices=[
|
547 |
-
value=[
|
548 |
label="Select documents to query"
|
549 |
)
|
550 |
|
@@ -554,13 +513,13 @@ document_selector = gr.CheckboxGroup(label="Select documents to query")
|
|
554 |
use_web_search = gr.Checkbox(label="Use Web Search", value=True)
|
555 |
|
556 |
demo = gr.ChatInterface(
|
557 |
-
|
558 |
additional_inputs=[
|
559 |
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
|
560 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
561 |
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
|
562 |
use_web_search,
|
563 |
-
document_selector #
|
564 |
],
|
565 |
title="AI-powered Web Search and PDF Chat Assistant",
|
566 |
description="Chat with your PDFs or use web search to answer questions (Please use toggle under Additional Inputs to swithc between PDF and Web Search, Default Value Web Search)",
|
@@ -603,42 +562,31 @@ with demo:
|
|
603 |
|
604 |
update_output = gr.Textbox(label="Update Status")
|
605 |
|
606 |
-
# Create a new row for displaying uploaded files with delete buttons
|
607 |
-
with gr.Row():
|
608 |
-
uploaded_files = gr.CheckboxGroup(label="Uploaded Documents", interactive=True)
|
609 |
-
delete_button = gr.Button("Delete Selected")
|
610 |
-
|
611 |
# Update both the output text and the document selector
|
612 |
-
update_button.click(
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
|
625 |
-
# Update the document selector in the chat interface
|
626 |
-
uploaded_files.change(
|
627 |
-
lambda x: gr.update(choices=x, value=x),
|
628 |
-
inputs=[uploaded_files],
|
629 |
-
outputs=[document_selector]
|
630 |
-
)
|
631 |
-
|
632 |
gr.Markdown(
|
633 |
"""
|
634 |
## How to use
|
635 |
1. Upload PDF documents using the file input at the top.
|
636 |
2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
|
637 |
3. Select the documents you want to query using the checkboxes.
|
638 |
-
4.
|
639 |
-
5.
|
640 |
-
6.
|
641 |
-
7.
|
|
|
642 |
"""
|
643 |
)
|
644 |
|
|
|
15 |
from huggingface_hub import InferenceClient
|
16 |
import inspect
|
17 |
import logging
|
|
|
18 |
|
19 |
|
20 |
# Set up basic configuration for logging
|
|
|
47 |
)
|
48 |
|
49 |
def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]:
|
50 |
+
"""Loads and splits the document into pages."""
|
|
|
|
|
51 |
if parser == "pypdf":
|
52 |
+
loader = PyPDFLoader(file.name)
|
53 |
return loader.load_and_split()
|
54 |
elif parser == "llamaparse":
|
55 |
try:
|
56 |
+
documents = llama_parser.load_data(file.name)
|
57 |
+
return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
|
58 |
except Exception as e:
|
59 |
+
print(f"Error using Llama Parse: {str(e)}")
|
60 |
+
print("Falling back to PyPDF parser")
|
61 |
+
loader = PyPDFLoader(file.name)
|
62 |
return loader.load_and_split()
|
63 |
else:
|
64 |
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
|
|
|
72 |
|
73 |
if not files:
|
74 |
logging.warning("No files provided for update_vectors")
|
75 |
+
return "Please upload at least one PDF file.", gr.CheckboxGroup(
|
76 |
+
choices=[doc["name"] for doc in uploaded_documents],
|
77 |
+
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
|
78 |
+
label="Select documents to query"
|
79 |
+
)
|
80 |
|
81 |
embed = get_embeddings()
|
82 |
total_chunks = 0
|
|
|
89 |
logging.info(f"Loaded {len(data)} chunks from {file.name}")
|
90 |
all_data.extend(data)
|
91 |
total_chunks += len(data)
|
92 |
+
# Append new documents instead of replacing
|
93 |
+
if not any(doc["name"] == file.name for doc in uploaded_documents):
|
94 |
+
uploaded_documents.append({"name": file.name, "selected": True})
|
95 |
logging.info(f"Added new document to uploaded_documents: {file.name}")
|
96 |
else:
|
97 |
logging.info(f"Document already exists in uploaded_documents: {file.name}")
|
|
|
100 |
|
101 |
logging.info(f"Total chunks processed: {total_chunks}")
|
102 |
|
103 |
+
if os.path.exists("faiss_database"):
|
104 |
+
logging.info("Updating existing FAISS database")
|
105 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
106 |
+
database.add_documents(all_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
else:
|
108 |
+
logging.info("Creating new FAISS database")
|
109 |
+
database = FAISS.from_documents(all_data, embed)
|
110 |
|
111 |
+
database.save_local("faiss_database")
|
112 |
+
logging.info("FAISS database saved")
|
113 |
|
114 |
+
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", gr.CheckboxGroup(
|
115 |
+
choices=[doc["name"] for doc in uploaded_documents],
|
116 |
+
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
|
117 |
+
label="Select documents to query"
|
118 |
+
)
|
119 |
|
120 |
+
def delete_files(files_to_delete):
|
121 |
+
global uploaded_documents
|
122 |
+
if not files_to_delete:
|
123 |
+
return "No files selected for deletion.", document_selector
|
124 |
+
|
125 |
+
deleted_files = []
|
126 |
+
for file_name in files_to_delete:
|
127 |
+
# Remove the file from uploaded_documents
|
128 |
+
uploaded_documents = [doc for doc in uploaded_documents if doc["name"] != file_name]
|
129 |
+
deleted_files.append(file_name)
|
130 |
+
|
131 |
+
# Update the FAISS database
|
132 |
+
if os.path.exists("faiss_database"):
|
133 |
+
embed = get_embeddings()
|
134 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
135 |
+
|
136 |
+
# Remove documents from the database
|
137 |
+
database.delete(lambda doc: doc.metadata["source"] in deleted_files)
|
138 |
+
|
139 |
+
# Save the updated database
|
140 |
database.save_local("faiss_database")
|
141 |
+
|
142 |
+
# Update the document selector
|
143 |
+
updated_selector = gr.CheckboxGroup(
|
144 |
+
choices=[doc["name"] for doc in uploaded_documents],
|
145 |
+
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
|
146 |
+
label="Select documents to query"
|
147 |
+
)
|
148 |
+
|
149 |
+
return f"Deleted files: {', '.join(deleted_files)}", updated_selector
|
150 |
|
151 |
def generate_chunked_response(prompt, model, max_tokens=10000, num_calls=3, temperature=0.2, should_stop=False):
|
152 |
print(f"Starting generate_chunked_response with {num_calls} calls")
|
|
|
248 |
...,
|
249 |
description="List of sources to cite. Should be an URL of the source."
|
250 |
)
|
251 |
+
def chatbot_interface(message, history, use_web_search, model, temperature, num_calls):
|
252 |
if not message.strip():
|
253 |
return "", history
|
254 |
|
255 |
history = history + [(message, "")]
|
256 |
|
257 |
try:
|
258 |
+
for response in respond(message, history, model, temperature, num_calls, use_web_search):
|
259 |
history[-1] = (message, response)
|
260 |
yield history
|
261 |
except gr.CancelledError:
|
|
|
278 |
logging.info(f"User Query: {message}")
|
279 |
logging.info(f"Model Used: {model}")
|
280 |
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
281 |
+
|
282 |
logging.info(f"Selected Documents: {selected_docs}")
|
283 |
|
284 |
try:
|
285 |
if use_web_search:
|
|
|
286 |
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
|
287 |
response = f"{main_content}\n\n{sources}"
|
288 |
+
first_line = response.split('\n')[0] if response else ''
|
289 |
+
# logging.info(f"Generated Response (first line): {first_line}")
|
290 |
yield response
|
291 |
else:
|
|
|
292 |
embed = get_embeddings()
|
293 |
if os.path.exists("faiss_database"):
|
|
|
294 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
295 |
retriever = database.as_retriever()
|
296 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
# Filter relevant documents based on user selection
|
298 |
+
all_relevant_docs = retriever.get_relevant_documents(message)
|
299 |
+
relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs]
|
300 |
|
301 |
+
if not relevant_docs:
|
|
|
302 |
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
303 |
return
|
304 |
|
305 |
+
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
|
|
306 |
else:
|
|
|
307 |
context_str = "No documents available."
|
308 |
yield "No documents available. Please upload PDF documents to answer questions."
|
309 |
return
|
310 |
|
311 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
312 |
+
# Use Cloudflare API
|
313 |
for partial_response in get_response_from_cloudflare(prompt="", context=context_str, query=message, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
314 |
+
first_line = partial_response.split('\n')[0] if partial_response else ''
|
315 |
+
logging.info(f"Generated Response (first line): {first_line}")
|
316 |
yield partial_response
|
317 |
else:
|
318 |
+
# Use Hugging Face API
|
319 |
for partial_response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature):
|
320 |
+
first_line = partial_response.split('\n')[0] if partial_response else ''
|
321 |
+
logging.info(f"Generated Response (first line): {first_line}")
|
322 |
yield partial_response
|
|
|
|
|
323 |
except Exception as e:
|
324 |
+
logging.error(f"Error with {model}: {str(e)}")
|
325 |
+
if "microsoft/Phi-3-mini-4k-instruct" in model:
|
326 |
+
logging.info("Falling back to Mistral model due to Phi-3 error")
|
327 |
+
fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
|
328 |
+
yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search, selected_docs)
|
329 |
+
else:
|
330 |
+
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
|
331 |
|
332 |
+
logging.basicConfig(level=logging.DEBUG)
|
|
|
333 |
|
334 |
def get_response_from_cloudflare(prompt, context, query, num_calls=3, temperature=0.2, search_type="pdf"):
|
335 |
headers = {
|
|
|
431 |
|
432 |
retriever = database.as_retriever()
|
433 |
logging.info(f"Retrieving relevant documents for query: {query}")
|
434 |
+
relevant_docs = retriever.get_relevant_documents(query)
|
435 |
+
logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
436 |
|
437 |
# Filter relevant_docs based on selected documents
|
438 |
+
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
|
439 |
logging.info(f"Number of filtered documents: {len(filtered_docs)}")
|
440 |
|
441 |
if not filtered_docs:
|
|
|
444 |
return
|
445 |
|
446 |
for doc in filtered_docs:
|
447 |
+
logging.info(f"Document source: {doc.metadata['source']}")
|
448 |
logging.info(f"Document content preview: {doc.page_content[:100]}...") # Log first 100 characters of each document
|
449 |
|
450 |
context_str = "\n".join([doc.page_content for doc in filtered_docs])
|
|
|
467 |
response = ""
|
468 |
for i in range(num_calls):
|
469 |
logging.info(f"API call {i+1}/{num_calls}")
|
470 |
+
for message in client.chat_completion(
|
471 |
+
messages=[{"role": "user", "content": prompt}],
|
472 |
+
max_tokens=10000,
|
473 |
+
temperature=temperature,
|
474 |
+
stream=True,
|
475 |
+
):
|
476 |
+
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
477 |
+
chunk = message.choices[0].delta.content
|
478 |
+
response += chunk
|
479 |
+
yield response # Yield partial response
|
|
|
|
|
|
|
|
|
480 |
|
481 |
logging.info("Finished generating response")
|
|
|
|
|
|
|
482 |
|
483 |
def vote(data: gr.LikeData):
|
484 |
if data.liked:
|
|
|
502 |
|
503 |
def display_documents():
|
504 |
return gr.CheckboxGroup(
|
505 |
+
choices=[doc["name"] for doc in uploaded_documents],
|
506 |
+
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
|
507 |
label="Select documents to query"
|
508 |
)
|
509 |
|
|
|
513 |
use_web_search = gr.Checkbox(label="Use Web Search", value=True)
|
514 |
|
515 |
demo = gr.ChatInterface(
|
516 |
+
respond,
|
517 |
additional_inputs=[
|
518 |
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
|
519 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
520 |
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
|
521 |
use_web_search,
|
522 |
+
document_selector # Add the document selector to the chat interface
|
523 |
],
|
524 |
title="AI-powered Web Search and PDF Chat Assistant",
|
525 |
description="Chat with your PDFs or use web search to answer questions (Please use toggle under Additional Inputs to swithc between PDF and Web Search, Default Value Web Search)",
|
|
|
562 |
|
563 |
update_output = gr.Textbox(label="Update Status")
|
564 |
|
|
|
|
|
|
|
|
|
|
|
565 |
# Update both the output text and the document selector
|
566 |
+
update_button.click(update_vectors,
|
567 |
+
inputs=[file_input, parser_dropdown],
|
568 |
+
outputs=[update_output, document_selector])
|
569 |
+
|
570 |
+
# Add delete button
|
571 |
+
delete_button = gr.Button("Delete Selected Files")
|
572 |
+
delete_output = gr.Textbox(label="Delete Status")
|
573 |
+
|
574 |
+
# Connect delete button to the delete_files function
|
575 |
+
delete_button.click(delete_files,
|
576 |
+
inputs=[document_selector],
|
577 |
+
outputs=[delete_output, document_selector])
|
578 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
579 |
gr.Markdown(
|
580 |
"""
|
581 |
## How to use
|
582 |
1. Upload PDF documents using the file input at the top.
|
583 |
2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
|
584 |
3. Select the documents you want to query using the checkboxes.
|
585 |
+
4. To delete files, select them in the checkbox and click "Delete Selected Files".
|
586 |
+
5. Ask questions in the chat interface.
|
587 |
+
6. Toggle "Use Web Search" to switch between PDF chat and web search.
|
588 |
+
7. Adjust Temperature and Number of API Calls to fine-tune the response generation.
|
589 |
+
8. Use the provided examples or ask your own questions.
|
590 |
"""
|
591 |
)
|
592 |
|