Shreyas094 commited on
Commit
048efbc
·
verified ·
1 Parent(s): a2c0e0e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +281 -69
app.py CHANGED
@@ -1,16 +1,170 @@
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceApi
3
- from duckduckgo_search import DDGS
4
  import requests
5
- import json
6
  from typing import List
7
  from pydantic import BaseModel, Field
8
- import os
 
 
 
 
 
 
 
9
 
10
  # Environment variables and configurations
11
  huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
- # Function to perform a DuckDuckGo search
14
  def duckduckgo_search(query):
15
  with DDGS() as ddgs:
16
  results = ddgs.text(query, max_results=5)
@@ -22,82 +176,140 @@ class CitingSources(BaseModel):
22
  description="List of sources to cite. Should be an URL of the source."
23
  )
24
 
25
- def get_response_with_search(query):
26
- # Perform the web search
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  search_results = duckduckgo_search(query)
28
-
29
- # Use the search results as context for the model
30
  context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
31
  for result in search_results if 'body' in result)
32
 
33
- # Prompt formatted for Mistral-7B-Instruct
34
  prompt = f"""<s>[INST] Using the following context:
35
  {context}
36
  Write a detailed and complete research document that fulfills the following user request: '{query}'
37
  After writing the document, please provide a list of sources used in your response. [/INST]"""
38
 
39
- # API endpoint for Mistral-7B-Instruct-v0.3
40
- API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3"
41
-
42
- # Headers
43
- headers = {"Authorization": f"Bearer {huggingface_token}"}
44
 
45
- # Payload
46
- payload = {
47
- "inputs": prompt,
48
- "parameters": {
49
- "max_new_tokens": 1000,
50
- "temperature": 0.7,
51
- "top_p": 0.95,
52
- "top_k": 40,
53
- "repetition_penalty": 1.1
54
- }
55
- }
56
 
57
- # Make the API call
58
- response = requests.post(API_URL, headers=headers, json=payload)
 
 
59
 
60
- if response.status_code == 200:
61
- result = response.json()
62
- if isinstance(result, list) and len(result) > 0:
63
- generated_text = result[0].get('generated_text', 'No text generated')
64
-
65
- # Remove the instruction part
66
- content_start = generated_text.find("[/INST]")
67
- if content_start != -1:
68
- generated_text = generated_text[content_start + 7:].strip()
69
-
70
- # Split the response into main content and sources
71
- parts = generated_text.split("Sources:", 1)
72
- main_content = parts[0].strip()
73
- sources = parts[1].strip() if len(parts) > 1 else ""
74
-
75
- return main_content, sources
76
- else:
77
- return f"Unexpected response format: {result}", ""
78
  else:
79
- return f"Error: API returned status code {response.status_code}", ""
80
-
81
- def chatbot_interface(message, history):
82
- main_content, sources = get_response_with_search(message)
83
- formatted_response = f"{main_content}\n\nSources:\n{sources}"
84
- return formatted_response
85
-
86
- # Gradio chatbot interface
87
- iface = gr.ChatInterface(
88
- fn=chatbot_interface,
89
- title="AI-powered Web Search Assistant",
90
- description="Ask questions, and I'll search the web and provide answers using the Mistral-7B-Instruct model.",
91
- examples=[
92
- ["What are the latest developments in AI?"],
93
- ["Tell me about recent updates on GitHub"],
94
- ["What are the best hotels in Galapagos, Ecuador?"],
95
- ["Summarize recent advancements in Python programming"],
96
- ],
97
- retry_btn="Retry",
98
- undo_btn="Undo",
99
- clear_btn="Clear",
100
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
 
102
  if __name__ == "__main__":
103
- iface.launch(share=True)
 
1
+ import os
2
+ import json
3
+ import re
4
  import gradio as gr
 
 
5
  import requests
6
+ from duckduckgo_search import DDGS
7
  from typing import List
8
  from pydantic import BaseModel, Field
9
+ from tempfile import NamedTemporaryFile
10
+ from langchain_community.vectorstores import FAISS
11
+ from langchain_community.document_loaders import PyPDFLoader
12
+ from langchain_community.embeddings import HuggingFaceEmbeddings
13
+ from llama_parse import LlamaParse
14
+ from langchain_core.documents import Document
15
+ from huggingface_hub import InferenceClient
16
+ import inspect
17
 
18
  # Environment variables and configurations
19
  huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
20
+ llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
21
+ CLOUDFLARE_ACCOUNT_ID = os.environ.get("CLOUDFLARE_ACCOUNT_ID")
22
+ CLOUDFLARE_AUTH_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN")
23
+
24
+ MODELS = [
25
+ "Qwen/Qwen2-72B-Instruct",
26
+ "google/gemma-2-9b",
27
+ "microsoft/Phi-3-mini-4k-instruct",
28
+ "Qwen/Qwen2-7B-Instruct",
29
+ "mistralai/Mistral-Nemo-Instruct-2407",
30
+ "mistralai/Mistral-7B-Instruct-v0.3",
31
+ "mistralai/Mixtral-8x7B-Instruct-v0.1",
32
+ "cloudflare/llama-3.1-8b-instruct" # Added Cloudflare Llama 3.1 model
33
+ ]
34
+
35
+ # Initialize LlamaParse
36
+ llama_parser = LlamaParse(
37
+ api_key=llama_cloud_api_key,
38
+ result_type="markdown",
39
+ num_workers=4,
40
+ verbose=True,
41
+ language="en",
42
+ )
43
+
44
+ def load_document(file: NamedTemporaryFile, parser: str = "pypdf") -> List[Document]:
45
+ """Loads and splits the document into pages."""
46
+ if parser == "pypdf":
47
+ loader = PyPDFLoader(file.name)
48
+ return loader.load_and_split()
49
+ elif parser == "llamaparse":
50
+ try:
51
+ documents = llama_parser.load_data(file.name)
52
+ return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
53
+ except Exception as e:
54
+ print(f"Error using Llama Parse: {str(e)}")
55
+ print("Falling back to PyPDF parser")
56
+ loader = PyPDFLoader(file.name)
57
+ return loader.load_and_split()
58
+ else:
59
+ raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
60
+
61
+ def get_embeddings():
62
+ return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
63
+
64
+ def update_vectors(files, parser):
65
+ if not files:
66
+ return "Please upload at least one PDF file."
67
+
68
+ embed = get_embeddings()
69
+ total_chunks = 0
70
+
71
+ all_data = []
72
+ for file in files:
73
+ data = load_document(file, parser)
74
+ all_data.extend(data)
75
+ total_chunks += len(data)
76
+
77
+ if os.path.exists("faiss_database"):
78
+ database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
79
+ database.add_documents(all_data)
80
+ else:
81
+ database = FAISS.from_documents(all_data, embed)
82
+
83
+ database.save_local("faiss_database")
84
+
85
+ return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}."
86
+
87
+ def generate_chunked_response(prompt, model, max_tokens=1000, max_chunks=5, temperature=0.7):
88
+ if model == "cloudflare/llama-3.1-8b-instruct":
89
+ return generate_cloudflare_response(prompt, max_tokens, temperature)
90
+
91
+ client = InferenceClient(
92
+ model,
93
+ token=huggingface_token,
94
+ )
95
+
96
+ full_response = ""
97
+ messages = [{"role": "user", "content": prompt}]
98
+
99
+ try:
100
+ for message in client.chat_completion(
101
+ messages=messages,
102
+ max_tokens=max_tokens,
103
+ temperature=temperature,
104
+ stream=True,
105
+ ):
106
+ chunk = message.choices[0].delta.content
107
+ if chunk:
108
+ full_response += chunk
109
+
110
+ except Exception as e:
111
+ print(f"Error in generating response: {str(e)}")
112
+
113
+ # Clean up the response
114
+ clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL)
115
+ clean_response = clean_response.replace("Using the following context:", "").strip()
116
+ clean_response = clean_response.replace("Using the following context from the PDF documents:", "").strip()
117
+
118
+ return clean_response
119
+
120
+ def generate_cloudflare_response(prompt, max_tokens, temperature):
121
+ try:
122
+ response = requests.post(
123
+ f"https://api.cloudflare.com/client/v4/accounts/{CLOUDFLARE_ACCOUNT_ID}/ai/run/@cf/meta/llama-3.1-8b-instruct",
124
+ headers={"Authorization": f"Bearer {CLOUDFLARE_AUTH_TOKEN}"},
125
+ json={
126
+ "messages": [
127
+ {"role": "system", "content": "You are a friendly assistant"},
128
+ {"role": "user", "content": prompt}
129
+ ],
130
+ "max_tokens": max_tokens,
131
+ "temperature": temperature
132
+ }
133
+ )
134
+
135
+ # Check if the request was successful
136
+ response.raise_for_status()
137
+
138
+ result = response.json()
139
+ if not result:
140
+ raise ValueError("Empty response from Cloudflare API")
141
+
142
+ if 'result' not in result:
143
+ raise ValueError(f"Unexpected response format. 'result' key missing. Response: {result}")
144
+
145
+ if 'response' not in result['result']:
146
+ raise ValueError(f"Unexpected response format. 'response' key missing. Result: {result['result']}")
147
+
148
+ return result['result']['response']
149
+
150
+ except requests.exceptions.RequestException as e:
151
+ error_message = f"Network error when calling Cloudflare API: {str(e)}"
152
+ print(error_message)
153
+ return f"Error: {error_message}"
154
+ except json.JSONDecodeError as e:
155
+ error_message = f"Error decoding JSON response from Cloudflare API: {str(e)}"
156
+ print(error_message)
157
+ return f"Error: {error_message}"
158
+ except ValueError as e:
159
+ error_message = str(e)
160
+ print(error_message)
161
+ return f"Error: {error_message}"
162
+ except Exception as e:
163
+ error_message = f"Unexpected error in generate_cloudflare_response: {str(e)}"
164
+ print(error_message)
165
+ return f"Error: {error_message}"
166
+
167
 
 
168
  def duckduckgo_search(query):
169
  with DDGS() as ddgs:
170
  results = ddgs.text(query, max_results=5)
 
176
  description="List of sources to cite. Should be an URL of the source."
177
  )
178
 
179
+ def get_response_from_pdf(query, model, temperature=0.7):
180
+ embed = get_embeddings()
181
+ if os.path.exists("faiss_database"):
182
+ database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
183
+ else:
184
+ return "No documents available. Please upload PDF documents to answer questions."
185
+
186
+ retriever = database.as_retriever()
187
+ relevant_docs = retriever.get_relevant_documents(query)
188
+ context_str = "\n".join([doc.page_content for doc in relevant_docs])
189
+
190
+ prompt = f"""<s>[INST] Using the following context from the PDF documents:
191
+ {context_str}
192
+ Write a detailed and complete response that answers the following user question: '{query}'
193
+ Do not include a list of sources in your response. [/INST]"""
194
+
195
+ generated_text = generate_chunked_response(prompt, model, temperature=temperature)
196
+
197
+ # Clean the response
198
+ clean_text = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', generated_text, flags=re.DOTALL)
199
+ clean_text = clean_text.replace("Using the following context from the PDF documents:", "").strip()
200
+
201
+ return clean_text
202
+
203
+ def get_response_with_search(query, model, temperature=0.7):
204
  search_results = duckduckgo_search(query)
 
 
205
  context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
206
  for result in search_results if 'body' in result)
207
 
 
208
  prompt = f"""<s>[INST] Using the following context:
209
  {context}
210
  Write a detailed and complete research document that fulfills the following user request: '{query}'
211
  After writing the document, please provide a list of sources used in your response. [/INST]"""
212
 
213
+ generated_text = generate_chunked_response(prompt, model, temperature=temperature)
 
 
 
 
214
 
215
+ # Clean the response
216
+ clean_text = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', generated_text, flags=re.DOTALL)
217
+ clean_text = clean_text.replace("Using the following context:", "").strip()
 
 
 
 
 
 
 
 
218
 
219
+ # Split the content and sources
220
+ parts = clean_text.split("Sources:", 1)
221
+ main_content = parts[0].strip()
222
+ sources = parts[1].strip() if len(parts) > 1 else ""
223
 
224
+ return main_content, sources
225
+
226
+ def chatbot_interface(message, history, use_web_search, model, temperature):
227
+ if not message.strip(): # Check if the message is empty or just whitespace
228
+ return history
229
+
230
+ if use_web_search:
231
+ main_content, sources = get_response_with_search(message, model, temperature)
232
+ formatted_response = f"{main_content}\n\nSources:\n{sources}"
 
 
 
 
 
 
 
 
 
233
  else:
234
+ response = get_response_from_pdf(message, model, temperature)
235
+ formatted_response = response
236
+
237
+ # Check if the last message in history is the same as the current message
238
+ if history and history[-1][0] == message:
239
+ # Replace the last response instead of adding a new one
240
+ history[-1] = (message, formatted_response)
241
+ else:
242
+ # Add the new message-response pair
243
+ history.append((message, formatted_response))
244
+
245
+ return history
246
+
247
+
248
+ def clear_and_update_chat(message, history, use_web_search, model, temperature):
249
+ updated_history = chatbot_interface(message, history, use_web_search, model, temperature)
250
+ return "", updated_history # Return empty string to clear the input
251
+
252
+ # Gradio interface
253
+ with gr.Blocks() as demo:
254
+
255
+ is_generating = gr.State(False)
256
+
257
+ def protected_clear_and_update_chat(message, history, use_web_search, model, temperature, is_generating):
258
+ if is_generating:
259
+ return message, history, is_generating
260
+ is_generating = True
261
+ updated_message, updated_history = clear_and_update_chat(message, history, use_web_search, model, temperature)
262
+ is_generating = False
263
+ return updated_message, updated_history, is_generating
264
+
265
+ gr.Markdown("# AI-powered Web Search and PDF Chat Assistant")
266
+
267
+ with gr.Row():
268
+ file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
269
+ parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="pypdf")
270
+ update_button = gr.Button("Upload Document")
271
+
272
+ update_output = gr.Textbox(label="Update Status")
273
+ update_button.click(update_vectors, inputs=[file_input, parser_dropdown], outputs=update_output)
274
+
275
+ chatbot = gr.Chatbot(label="Conversation")
276
+ msg = gr.Textbox(label="Ask a question")
277
+ use_web_search = gr.Checkbox(label="Use Web Search", value=False)
278
+
279
+ with gr.Row():
280
+ model_dropdown = gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[2])
281
+ temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
282
+
283
+ submit = gr.Button("Submit")
284
+
285
+ gr.Examples(
286
+ examples=[
287
+ ["What are the latest developments in AI?"],
288
+ ["Tell me about recent updates on GitHub"],
289
+ ["What are the best hotels in Galapagos, Ecuador?"],
290
+ ["Summarize recent advancements in Python programming"],
291
+ ],
292
+ inputs=msg,
293
+ )
294
+
295
+ submit.click(protected_clear_and_update_chat,
296
+ inputs=[msg, chatbot, use_web_search, model_dropdown, temperature_slider, is_generating],
297
+ outputs=[msg, chatbot, is_generating])
298
+ msg.submit(protected_clear_and_update_chat,
299
+ inputs=[msg, chatbot, use_web_search, model_dropdown, temperature_slider, is_generating],
300
+ outputs=[msg, chatbot, is_generating])
301
+
302
+ gr.Markdown(
303
+ """
304
+ ## How to use
305
+ 1. Upload PDF documents using the file input at the top.
306
+ 2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
307
+ 3. Ask questions in the textbox.
308
+ 4. Toggle "Use Web Search" to switch between PDF chat and web search.
309
+ 5. Adjust Temperature and Repetition Penalty sliders to fine-tune the response generation.
310
+ 6. Click "Submit" or press Enter to get a response.
311
+ """
312
+ )
313
 
314
  if __name__ == "__main__":
315
+ demo.launch(share=True)