CNN_Benchmark / wandb_utils.py
Shreshth2002's picture
Upload folder using huggingface_hub
c65e61c verified
import wandb
import torch
import torch.nn as nn
import numpy as np
from typing import Dict, Any, Optional
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import confusion_matrix
from utils.data_loader import get_cifar10_info
class WandbLogger:
"""Minimal yet powerful W&B integration for FAANG-level ML projects."""
def __init__(self, project: str = "cifar10-benchmark", entity: Optional[str] = None):
self.project = project
self.entity = entity
self.run = None
def init_experiment(self, config: Dict[str, Any], model: nn.Module, model_name: str):
"""Initialize W&B run with model architecture tracking."""
# Auto-detect model stats for config
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
enhanced_config = {
**config,
'model_name': model_name,
'total_params': total_params,
'trainable_params': trainable_params,
'model_size_mb': total_params * 4 / (1024 ** 2),
'architecture': str(model.__class__.__name__)
}
self.run = wandb.init(
project=self.project,
entity=self.entity,
config=enhanced_config,
name=f"{model_name}-{wandb.util.generate_id()}"
)
# Log model architecture
wandb.watch(model, log_freq=100, log_graph=True)
return self.run
def log_metrics(self, metrics: Dict[str, float], step: int):
"""Log training metrics with automatic prefixing."""
wandb.log(metrics, step=step)
def log_confusion_matrix(self, y_true: np.ndarray, y_pred: np.ndarray, epoch: int):
"""Log confusion matrix as W&B image."""
cifar10_info = get_cifar10_info()
cm = confusion_matrix(y_true, y_pred)
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
xticklabels=cifar10_info['class_names'],
yticklabels=cifar10_info['class_names'])
plt.title(f'Confusion Matrix - Epoch {epoch}')
plt.tight_layout()
wandb.log({
"confusion_matrix": wandb.Image(plt),
"epoch": epoch
})
plt.close()
def log_model_checkpoint(self, model: nn.Module, optimizer, epoch: int,
metrics: Dict[str, float], is_best: bool = False):
"""Log model checkpoint with metadata."""
checkpoint = {
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
**metrics
}
filename = f"model_epoch_{epoch}.pth"
torch.save(checkpoint, filename)
artifact = wandb.Artifact(
name=f"model-{self.run.id}",
type="model",
metadata={"epoch": epoch, "is_best": is_best, **metrics}
)
artifact.add_file(filename)
wandb.log_artifact(artifact)
def finish(self):
"""Cleanup W&B run."""
if self.run:
wandb.finish()
def create_hyperparameter_sweep():
"""FAANG-level hyperparameter sweep configuration."""
return {
'method': 'bayes',
'metric': {'name': 'val_accuracy', 'goal': 'maximize'},
'parameters': {
'learning_rate': {'distribution': 'log_uniform', 'min': 1e-5, 'max': 1e-2},
'batch_size': {'values': [32, 64, 128]},
'weight_decay': {'distribution': 'log_uniform', 'min': 1e-6, 'max': 1e-3},
'optimizer': {'values': ['adamw', 'sgd']},
'scheduler': {'values': ['cosine', 'step']},
'dropout_rate': {'distribution': 'uniform', 'min': 0.1, 'max': 0.5}
}
}
def run_hyperparameter_sweep(train_fn, sweep_config: Dict[str, Any], count: int = 20):
"""Execute hyperparameter sweep with W&B."""
sweep_id = wandb.sweep(sweep_config, project="cifar10-benchmark")
wandb.agent(sweep_id, train_fn, count=count)
# Integration with existing training loop
def enhanced_train_step(model, train_loader, val_loader, optimizer, criterion,
scheduler, num_epochs, device, logger: WandbLogger):
"""Enhanced training with W&B logging."""
model.to(device)
best_val_acc = 0.0
for epoch in range(num_epochs):
# Training
model.train()
train_loss, train_acc = 0.0, 0.0
for batch_idx, (inputs, targets) in enumerate(train_loader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
train_acc += (outputs.argmax(1) == targets).float().mean().item()
# Validation
model.eval()
val_loss, val_acc = 0.0, 0.0
all_preds, all_targets = [], []
with torch.no_grad():
for inputs, targets in val_loader:
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
loss = criterion(outputs, targets)
val_loss += loss.item()
val_acc += (outputs.argmax(1) == targets).float().mean().item()
all_preds.extend(outputs.argmax(1).cpu().numpy())
all_targets.extend(targets.cpu().numpy())
# Normalize metrics
train_loss /= len(train_loader)
train_acc /= len(train_loader)
val_loss /= len(val_loader)
val_acc /= len(val_loader)
scheduler.step()
# Log to W&B
logger.log_metrics({
'epoch': epoch,
'train_loss': train_loss,
'train_accuracy': train_acc * 100,
'val_loss': val_loss,
'val_accuracy': val_acc * 100,
'learning_rate': optimizer.param_groups[0]['lr']
}, step=epoch)
# Log confusion matrix every 10 epochs
if (epoch + 1) % 10 == 0:
logger.log_confusion_matrix(all_targets, all_preds, epoch)
# Save best model
is_best = val_acc > best_val_acc
if is_best:
best_val_acc = val_acc
logger.log_model_checkpoint(
model, optimizer, epoch,
{'val_accuracy': val_acc, 'val_loss': val_loss},
is_best=True
)
print(f"Epoch {epoch+1}/{num_epochs} | "
f"Train: {train_loss:.4f}/{train_acc:.3f} | "
f"Val: {val_loss:.4f}/{val_acc:.3f}")
return best_val_acc