Shreeraj's picture
Update app.py
84a7d93
import gradio as gr
import torch
from PIL import Image
from torchvision.transforms import ToTensor
import torchvision.transforms as transforms
import torch.nn.functional as F
import numpy as np
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
import matplotlib.pyplot as plt
# Load the pre-trained model
model = torch.load('model.pth', map_location=torch.device('cpu'))
model.eval()
#define the target layer to pull for gradcam
target_layers = [model.layer4[-1]]
# Define the class labels
class_labels = ['Crazing', 'Inclusion', 'Patches', 'Pitted', 'Rolled', 'Scratches']
# Transformations for input images
preprocess = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.4562, 0.4562, 0.4562], std=[0.2502, 0.2502, 0.2502]),
])
inv_normalize = transforms.Normalize(
mean=[0.4562, 0.4562, 0.4562],
std=[0.2502, 0.2502, 0.2502]
)
# Gradio app interface
def classify_image(inp, transperancy=0.8):
model.to("cpu")
input_tensor = preprocess(inp)
input_batch = input_tensor.unsqueeze(0).to('cpu') # Create a batch
cam = GradCAM(model=model,use_cuda=False, target_layers=target_layers)
grayscale_cam = cam(input_tensor=input_batch, targets=None)
grayscale_cam = grayscale_cam[0, :]
img = input_tensor.squeeze(0)
img = inv_normalize(img)
rgb_img = np.transpose(img, (1, 2, 0))
rgb_img = rgb_img.numpy()
rgb_img = (rgb_img - rgb_img.min()) / (rgb_img.max() - rgb_img.min())
visualization = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True, image_weight=transperancy)
with torch.no_grad():
output = model(input_batch)
probabilities = F.softmax(output[0], dim=0)
pred_class_idx = torch.argmax(probabilities).item()
class_probabilities = {class_labels[i]: float(probabilities[i]) for i in range(len(class_labels))}
#prob_string = "\n".join([f"{label}: {prob:.2f}" for label, prob in class_probabilities.items()])
return inp, class_probabilities, visualization
iface = gr.Interface(
fn=classify_image,
inputs=[gr.Image(shape=(200, 200),type="pil", label="Input Image"),
gr.Slider(0, 1, value = 0.8, label="Opacity of GradCAM")],
outputs=[
gr.Image(shape=(200,200),type="numpy", label="Input Image").style(width=300, height=300),
gr.Label(label="Probability of Defect", num_top_classes=3),
gr.Image(shape=(200,200), type="numpy", label="GradCam").style(width=300, height=300)
],
title="Metal Defects Image Classification",
description="The classification depends on the microscopic scale of the image being uploaded :)"
)
iface.launch()