CONBERT-3 / fin_readability_sustainability.py
Shredder's picture
Upload fin_readability_sustainability.py
ea5e0c1
import torch
import transformers
from torch.utils.data import Dataset, DataLoader
from transformers import RobertaModel, RobertaTokenizer, BertModel, BertTokenizer
import pandas as pd
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MAX_LEN = 128
BATCH_SIZE = 20
text_col_name = 'sentence'
def scoring_data_prep(dataset):
out = []
target = []
mask = []
for i in range(len(dataset)):
rec = dataset[i]
out.append(rec['ids'].reshape(-1,MAX_LEN))
mask.append(rec['mask'].reshape(-1,MAX_LEN))
out_stack = torch.cat(out, dim = 0)
mask_stack = torch.cat(mask, dim =0 )
out_stack = out_stack.to(device, dtype = torch.long)
mask_stack = mask_stack.to(device, dtype = torch.long)
return out_stack, mask_stack
class Triage(Dataset):
"""
This is a subclass of torch packages Dataset class. It processes input to create ids, masks and targets required for model training.
"""
def __init__(self, dataframe, tokenizer, max_len, text_col_name):
self.len = len(dataframe)
self.data = dataframe
self.tokenizer = tokenizer
self.max_len = max_len
self.text_col_name = text_col_name
def __getitem__(self, index):
title = str(self.data[self.text_col_name][index])
title = " ".join(title.split())
inputs = self.tokenizer.encode_plus(
title,
None,
add_special_tokens=True,
max_length=self.max_len,
pad_to_max_length=True, #padding='max_length' #For future version use `padding='max_length'`
return_token_type_ids=True,
truncation=True,
)
ids = inputs["input_ids"]
mask = inputs["attention_mask"]
return {
"ids": torch.tensor(ids, dtype=torch.long),
"mask": torch.tensor(mask, dtype=torch.long),
}
def __len__(self):
return self.len
class BERTClass(torch.nn.Module):
def __init__(self, num_class, task):
super(BERTClass, self).__init__()
self.num_class = num_class
if task =="sustanability":
self.l1 = RobertaModel.from_pretrained("roberta-base")
else:
self.l1 = BertModel.from_pretrained("ProsusAI/finbert")
self.pre_classifier = torch.nn.Linear(768, 768)
self.dropout = torch.nn.Dropout(0.3)
self.classifier = torch.nn.Linear(768, self.num_class)
self.history = dict()
def forward(self, input_ids, attention_mask):
output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask)
hidden_state = output_1[0]
pooler = hidden_state[:, 0]
pooler = self.pre_classifier(pooler)
pooler = torch.nn.ReLU()(pooler)
pooler = self.dropout(pooler)
output = self.classifier(pooler)
return output
def do_predict(model, tokenizer, test_df):
test_set = Triage(test_df, tokenizer, MAX_LEN, text_col_name)
test_params = {'batch_size' : BATCH_SIZE, 'shuffle': False, 'num_workers':0}
test_loader = DataLoader(test_set, **test_params)
out_stack, mask_stack = scoring_data_prep(dataset = test_set)
n = 0
combined_output = []
model.eval()
with torch.no_grad():
while n < test_df.shape[0]:
output = model(out_stack[n:n+BATCH_SIZE,:],mask_stack[n:n+BATCH_SIZE,:])
n = n + BATCH_SIZE
combined_output.append(output)
combined_output = torch.cat(combined_output, dim = 0)
preds = torch.argsort(combined_output, axis = 1, descending = True)
preds = preds.to('cpu')
actual_predictions = [i[0] for i in preds.tolist()]
combined_output = combined_output.to('cpu')
prob_predictions= [i[1] for i in combined_output.tolist()]
return (actual_predictions, prob_predictions)