styletts2_Japanese / losses.py
mrfakename's picture
Initial Commit
635f007
raw
history blame
9.6 kB
import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoModel
class SpectralConvergengeLoss(torch.nn.Module):
"""Spectral convergence loss module."""
def __init__(self):
"""Initilize spectral convergence loss module."""
super(SpectralConvergengeLoss, self).__init__()
def forward(self, x_mag, y_mag):
"""Calculate forward propagation.
Args:
x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
Returns:
Tensor: Spectral convergence loss value.
"""
return torch.norm(y_mag - x_mag, p=1) / torch.norm(y_mag, p=1)
class STFTLoss(torch.nn.Module):
"""STFT loss module."""
def __init__(
self, fft_size=1024, shift_size=120, win_length=600, window=torch.hann_window
):
"""Initialize STFT loss module."""
super(STFTLoss, self).__init__()
self.fft_size = fft_size
self.shift_size = shift_size
self.win_length = win_length
self.to_mel = torchaudio.transforms.MelSpectrogram(
sample_rate=24000,
n_fft=fft_size,
win_length=win_length,
hop_length=shift_size,
window_fn=window,
)
self.spectral_convergenge_loss = SpectralConvergengeLoss()
def forward(self, x, y):
"""Calculate forward propagation.
Args:
x (Tensor): Predicted signal (B, T).
y (Tensor): Groundtruth signal (B, T).
Returns:
Tensor: Spectral convergence loss value.
Tensor: Log STFT magnitude loss value.
"""
x_mag = self.to_mel(x)
mean, std = -4, 4
x_mag = (torch.log(1e-5 + x_mag) - mean) / std
y_mag = self.to_mel(y)
mean, std = -4, 4
y_mag = (torch.log(1e-5 + y_mag) - mean) / std
sc_loss = self.spectral_convergenge_loss(x_mag, y_mag)
return sc_loss
class MultiResolutionSTFTLoss(torch.nn.Module):
"""Multi resolution STFT loss module."""
def __init__(
self,
fft_sizes=[1024, 2048, 512],
hop_sizes=[120, 240, 50],
win_lengths=[600, 1200, 240],
window=torch.hann_window,
):
"""Initialize Multi resolution STFT loss module.
Args:
fft_sizes (list): List of FFT sizes.
hop_sizes (list): List of hop sizes.
win_lengths (list): List of window lengths.
window (str): Window function type.
"""
super(MultiResolutionSTFTLoss, self).__init__()
assert len(fft_sizes) == len(hop_sizes) == len(win_lengths)
self.stft_losses = torch.nn.ModuleList()
for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths):
self.stft_losses += [STFTLoss(fs, ss, wl, window)]
def forward(self, x, y):
"""Calculate forward propagation.
Args:
x (Tensor): Predicted signal (B, T).
y (Tensor): Groundtruth signal (B, T).
Returns:
Tensor: Multi resolution spectral convergence loss value.
Tensor: Multi resolution log STFT magnitude loss value.
"""
sc_loss = 0.0
for f in self.stft_losses:
sc_l = f(x, y)
sc_loss += sc_l
sc_loss /= len(self.stft_losses)
return sc_loss
def feature_loss(fmap_r, fmap_g):
loss = 0
for dr, dg in zip(fmap_r, fmap_g):
for rl, gl in zip(dr, dg):
loss += torch.mean(torch.abs(rl - gl))
return loss * 2
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
loss = 0
r_losses = []
g_losses = []
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
r_loss = torch.mean((1 - dr) ** 2)
g_loss = torch.mean(dg**2)
loss += r_loss + g_loss
r_losses.append(r_loss.item())
g_losses.append(g_loss.item())
return loss, r_losses, g_losses
def generator_loss(disc_outputs):
loss = 0
gen_losses = []
for dg in disc_outputs:
l = torch.mean((1 - dg) ** 2)
gen_losses.append(l)
loss += l
return loss, gen_losses
""" https://dl.acm.org/doi/abs/10.1145/3573834.3574506 """
def discriminator_TPRLS_loss(disc_real_outputs, disc_generated_outputs):
loss = 0
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
tau = 0.04
m_DG = torch.median((dr - dg))
L_rel = torch.mean((((dr - dg) - m_DG) ** 2)[dr < dg + m_DG])
loss += tau - F.relu(tau - L_rel)
return loss
def generator_TPRLS_loss(disc_real_outputs, disc_generated_outputs):
loss = 0
for dg, dr in zip(disc_real_outputs, disc_generated_outputs):
tau = 0.04
m_DG = torch.median((dr - dg))
L_rel = torch.mean((((dr - dg) - m_DG) ** 2)[dr < dg + m_DG])
loss += tau - F.relu(tau - L_rel)
return loss
class GeneratorLoss(torch.nn.Module):
def __init__(self, mpd, msd):
super(GeneratorLoss, self).__init__()
self.mpd = mpd
self.msd = msd
def forward(self, y, y_hat):
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = self.mpd(y, y_hat)
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = self.msd(y, y_hat)
loss_fm_f = feature_loss(fmap_f_r, fmap_f_g)
loss_fm_s = feature_loss(fmap_s_r, fmap_s_g)
loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g)
loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g)
loss_rel = generator_TPRLS_loss(y_df_hat_r, y_df_hat_g) + generator_TPRLS_loss(
y_ds_hat_r, y_ds_hat_g
)
loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_rel
return loss_gen_all.mean()
class DiscriminatorLoss(torch.nn.Module):
def __init__(self, mpd, msd):
super(DiscriminatorLoss, self).__init__()
self.mpd = mpd
self.msd = msd
def forward(self, y, y_hat):
# MPD
y_df_hat_r, y_df_hat_g, _, _ = self.mpd(y, y_hat)
loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(
y_df_hat_r, y_df_hat_g
)
# MSD
y_ds_hat_r, y_ds_hat_g, _, _ = self.msd(y, y_hat)
loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(
y_ds_hat_r, y_ds_hat_g
)
loss_rel = discriminator_TPRLS_loss(
y_df_hat_r, y_df_hat_g
) + discriminator_TPRLS_loss(y_ds_hat_r, y_ds_hat_g)
d_loss = loss_disc_s + loss_disc_f + loss_rel
return d_loss.mean()
class WavLMLoss(torch.nn.Module):
def __init__(self, model, wd, model_sr, slm_sr=16000):
super(WavLMLoss, self).__init__()
self.wavlm = AutoModel.from_pretrained(model)
self.wd = wd
self.resample = torchaudio.transforms.Resample(model_sr, slm_sr)
def forward(self, wav, y_rec):
with torch.no_grad():
wav_16 = self.resample(wav)
wav_embeddings = self.wavlm(
input_values=wav_16, output_hidden_states=True
).hidden_states
y_rec_16 = self.resample(y_rec)
y_rec_embeddings = self.wavlm(
input_values=y_rec_16.squeeze(), output_hidden_states=True
).hidden_states
floss = 0
for er, eg in zip(wav_embeddings, y_rec_embeddings):
floss += torch.mean(torch.abs(er - eg))
return floss.mean()
def generator(self, y_rec):
y_rec_16 = self.resample(y_rec)
y_rec_embeddings = self.wavlm(
input_values=y_rec_16, output_hidden_states=True
).hidden_states
y_rec_embeddings = (
torch.stack(y_rec_embeddings, dim=1)
.transpose(-1, -2)
.flatten(start_dim=1, end_dim=2)
)
y_df_hat_g = self.wd(y_rec_embeddings)
loss_gen = torch.mean((1 - y_df_hat_g) ** 2)
return loss_gen
def discriminator(self, wav, y_rec):
with torch.no_grad():
wav_16 = self.resample(wav)
wav_embeddings = self.wavlm(
input_values=wav_16, output_hidden_states=True
).hidden_states
y_rec_16 = self.resample(y_rec)
y_rec_embeddings = self.wavlm(
input_values=y_rec_16, output_hidden_states=True
).hidden_states
y_embeddings = (
torch.stack(wav_embeddings, dim=1)
.transpose(-1, -2)
.flatten(start_dim=1, end_dim=2)
)
y_rec_embeddings = (
torch.stack(y_rec_embeddings, dim=1)
.transpose(-1, -2)
.flatten(start_dim=1, end_dim=2)
)
y_d_rs = self.wd(y_embeddings)
y_d_gs = self.wd(y_rec_embeddings)
y_df_hat_r, y_df_hat_g = y_d_rs, y_d_gs
r_loss = torch.mean((1 - y_df_hat_r) ** 2)
g_loss = torch.mean((y_df_hat_g) ** 2)
loss_disc_f = r_loss + g_loss
return loss_disc_f.mean()
def discriminator_forward(self, wav):
with torch.no_grad():
wav_16 = self.resample(wav)
wav_embeddings = self.wavlm(
input_values=wav_16, output_hidden_states=True
).hidden_states
y_embeddings = (
torch.stack(wav_embeddings, dim=1)
.transpose(-1, -2)
.flatten(start_dim=1, end_dim=2)
)
y_d_rs = self.wd(y_embeddings)
return y_d_rs