Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn.functional as F | |
import torch.nn as nn | |
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d | |
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm | |
from .utils import init_weights, get_padding | |
import math | |
import random | |
import numpy as np | |
from scipy.signal import get_window | |
LRELU_SLOPE = 0.1 | |
class AdaIN1d(nn.Module): | |
def __init__(self, style_dim, num_features): | |
super().__init__() | |
self.norm = nn.InstanceNorm1d(num_features, affine=False) | |
self.fc = nn.Linear(style_dim, num_features * 2) | |
def forward(self, x, s): | |
h = self.fc(s) | |
h = h.view(h.size(0), h.size(1), 1) | |
gamma, beta = torch.chunk(h, chunks=2, dim=1) | |
return (1 + gamma) * self.norm(x) + beta | |
class AdaINResBlock1(torch.nn.Module): | |
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64): | |
super(AdaINResBlock1, self).__init__() | |
self.convs1 = nn.ModuleList( | |
[ | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[0], | |
padding=get_padding(kernel_size, dilation[0]), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[1], | |
padding=get_padding(kernel_size, dilation[1]), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[2], | |
padding=get_padding(kernel_size, dilation[2]), | |
) | |
), | |
] | |
) | |
self.convs1.apply(init_weights) | |
self.convs2 = nn.ModuleList( | |
[ | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=1, | |
padding=get_padding(kernel_size, 1), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=1, | |
padding=get_padding(kernel_size, 1), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=1, | |
padding=get_padding(kernel_size, 1), | |
) | |
), | |
] | |
) | |
self.convs2.apply(init_weights) | |
self.adain1 = nn.ModuleList( | |
[ | |
AdaIN1d(style_dim, channels), | |
AdaIN1d(style_dim, channels), | |
AdaIN1d(style_dim, channels), | |
] | |
) | |
self.adain2 = nn.ModuleList( | |
[ | |
AdaIN1d(style_dim, channels), | |
AdaIN1d(style_dim, channels), | |
AdaIN1d(style_dim, channels), | |
] | |
) | |
self.alpha1 = nn.ParameterList( | |
[nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))] | |
) | |
self.alpha2 = nn.ParameterList( | |
[nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))] | |
) | |
def forward(self, x, s): | |
for c1, c2, n1, n2, a1, a2 in zip( | |
self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2 | |
): | |
xt = n1(x, s) | |
xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D | |
xt = c1(xt) | |
xt = n2(xt, s) | |
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D | |
xt = c2(xt) | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs1: | |
remove_weight_norm(l) | |
for l in self.convs2: | |
remove_weight_norm(l) | |
class TorchSTFT(torch.nn.Module): | |
def __init__( | |
self, filter_length=800, hop_length=200, win_length=800, window="hann" | |
): | |
super().__init__() | |
self.filter_length = filter_length | |
self.hop_length = hop_length | |
self.win_length = win_length | |
self.window = torch.from_numpy( | |
get_window(window, win_length, fftbins=True).astype(np.float32) | |
) | |
def transform(self, input_data): | |
forward_transform = torch.stft( | |
input_data, | |
self.filter_length, | |
self.hop_length, | |
self.win_length, | |
window=self.window.to(input_data.device), | |
return_complex=True, | |
) | |
return torch.abs(forward_transform), torch.angle(forward_transform) | |
def inverse(self, magnitude, phase): | |
inverse_transform = torch.istft( | |
magnitude * torch.exp(phase * 1j), | |
self.filter_length, | |
self.hop_length, | |
self.win_length, | |
window=self.window.to(magnitude.device), | |
) | |
return inverse_transform.unsqueeze( | |
-2 | |
) # unsqueeze to stay consistent with conv_transpose1d implementation | |
def forward(self, input_data): | |
self.magnitude, self.phase = self.transform(input_data) | |
reconstruction = self.inverse(self.magnitude, self.phase) | |
return reconstruction | |
class SineGen(torch.nn.Module): | |
"""Definition of sine generator | |
SineGen(samp_rate, harmonic_num = 0, | |
sine_amp = 0.1, noise_std = 0.003, | |
voiced_threshold = 0, | |
flag_for_pulse=False) | |
samp_rate: sampling rate in Hz | |
harmonic_num: number of harmonic overtones (default 0) | |
sine_amp: amplitude of sine-wavefrom (default 0.1) | |
noise_std: std of Gaussian noise (default 0.003) | |
voiced_thoreshold: F0 threshold for U/V classification (default 0) | |
flag_for_pulse: this SinGen is used inside PulseGen (default False) | |
Note: when flag_for_pulse is True, the first time step of a voiced | |
segment is always sin(np.pi) or cos(0) | |
""" | |
def __init__( | |
self, | |
samp_rate, | |
upsample_scale, | |
harmonic_num=0, | |
sine_amp=0.1, | |
noise_std=0.003, | |
voiced_threshold=0, | |
flag_for_pulse=False, | |
): | |
super(SineGen, self).__init__() | |
self.sine_amp = sine_amp | |
self.noise_std = noise_std | |
self.harmonic_num = harmonic_num | |
self.dim = self.harmonic_num + 1 | |
self.sampling_rate = samp_rate | |
self.voiced_threshold = voiced_threshold | |
self.flag_for_pulse = flag_for_pulse | |
self.upsample_scale = upsample_scale | |
def _f02uv(self, f0): | |
# generate uv signal | |
uv = (f0 > self.voiced_threshold).type(torch.float32) | |
return uv | |
def _f02sine(self, f0_values): | |
"""f0_values: (batchsize, length, dim) | |
where dim indicates fundamental tone and overtones | |
""" | |
# convert to F0 in rad. The interger part n can be ignored | |
# because 2 * np.pi * n doesn't affect phase | |
rad_values = (f0_values / self.sampling_rate) % 1 | |
# initial phase noise (no noise for fundamental component) | |
rand_ini = torch.rand( | |
f0_values.shape[0], f0_values.shape[2], device=f0_values.device | |
) | |
rand_ini[:, 0] = 0 | |
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini | |
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad) | |
if not self.flag_for_pulse: | |
# # for normal case | |
# # To prevent torch.cumsum numerical overflow, | |
# # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1. | |
# # Buffer tmp_over_one_idx indicates the time step to add -1. | |
# # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi | |
# tmp_over_one = torch.cumsum(rad_values, 1) % 1 | |
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0 | |
# cumsum_shift = torch.zeros_like(rad_values) | |
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 | |
# phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi | |
rad_values = torch.nn.functional.interpolate( | |
rad_values.transpose(1, 2), | |
scale_factor=1 / self.upsample_scale, | |
mode="linear", | |
).transpose(1, 2) | |
# tmp_over_one = torch.cumsum(rad_values, 1) % 1 | |
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0 | |
# cumsum_shift = torch.zeros_like(rad_values) | |
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 | |
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi | |
phase = torch.nn.functional.interpolate( | |
phase.transpose(1, 2) * self.upsample_scale, | |
scale_factor=self.upsample_scale, | |
mode="linear", | |
).transpose(1, 2) | |
sines = torch.sin(phase) | |
else: | |
# If necessary, make sure that the first time step of every | |
# voiced segments is sin(pi) or cos(0) | |
# This is used for pulse-train generation | |
# identify the last time step in unvoiced segments | |
uv = self._f02uv(f0_values) | |
uv_1 = torch.roll(uv, shifts=-1, dims=1) | |
uv_1[:, -1, :] = 1 | |
u_loc = (uv < 1) * (uv_1 > 0) | |
# get the instantanouse phase | |
tmp_cumsum = torch.cumsum(rad_values, dim=1) | |
# different batch needs to be processed differently | |
for idx in range(f0_values.shape[0]): | |
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :] | |
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :] | |
# stores the accumulation of i.phase within | |
# each voiced segments | |
tmp_cumsum[idx, :, :] = 0 | |
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum | |
# rad_values - tmp_cumsum: remove the accumulation of i.phase | |
# within the previous voiced segment. | |
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1) | |
# get the sines | |
sines = torch.cos(i_phase * 2 * np.pi) | |
return sines | |
def forward(self, f0): | |
"""sine_tensor, uv = forward(f0) | |
input F0: tensor(batchsize=1, length, dim=1) | |
f0 for unvoiced steps should be 0 | |
output sine_tensor: tensor(batchsize=1, length, dim) | |
output uv: tensor(batchsize=1, length, 1) | |
""" | |
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device) | |
# fundamental component | |
fn = torch.multiply( | |
f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device) | |
) | |
# generate sine waveforms | |
sine_waves = self._f02sine(fn) * self.sine_amp | |
# generate uv signal | |
# uv = torch.ones(f0.shape) | |
# uv = uv * (f0 > self.voiced_threshold) | |
uv = self._f02uv(f0) | |
# noise: for unvoiced should be similar to sine_amp | |
# std = self.sine_amp/3 -> max value ~ self.sine_amp | |
# . for voiced regions is self.noise_std | |
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 | |
noise = noise_amp * torch.randn_like(sine_waves) | |
# first: set the unvoiced part to 0 by uv | |
# then: additive noise | |
sine_waves = sine_waves * uv + noise | |
return sine_waves, uv, noise | |
class SourceModuleHnNSF(torch.nn.Module): | |
"""SourceModule for hn-nsf | |
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, | |
add_noise_std=0.003, voiced_threshod=0) | |
sampling_rate: sampling_rate in Hz | |
harmonic_num: number of harmonic above F0 (default: 0) | |
sine_amp: amplitude of sine source signal (default: 0.1) | |
add_noise_std: std of additive Gaussian noise (default: 0.003) | |
note that amplitude of noise in unvoiced is decided | |
by sine_amp | |
voiced_threshold: threhold to set U/V given F0 (default: 0) | |
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) | |
F0_sampled (batchsize, length, 1) | |
Sine_source (batchsize, length, 1) | |
noise_source (batchsize, length 1) | |
uv (batchsize, length, 1) | |
""" | |
def __init__( | |
self, | |
sampling_rate, | |
upsample_scale, | |
harmonic_num=0, | |
sine_amp=0.1, | |
add_noise_std=0.003, | |
voiced_threshod=0, | |
): | |
super(SourceModuleHnNSF, self).__init__() | |
self.sine_amp = sine_amp | |
self.noise_std = add_noise_std | |
# to produce sine waveforms | |
self.l_sin_gen = SineGen( | |
sampling_rate, | |
upsample_scale, | |
harmonic_num, | |
sine_amp, | |
add_noise_std, | |
voiced_threshod, | |
) | |
# to merge source harmonics into a single excitation | |
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) | |
self.l_tanh = torch.nn.Tanh() | |
def forward(self, x): | |
""" | |
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) | |
F0_sampled (batchsize, length, 1) | |
Sine_source (batchsize, length, 1) | |
noise_source (batchsize, length 1) | |
""" | |
# source for harmonic branch | |
with torch.no_grad(): | |
sine_wavs, uv, _ = self.l_sin_gen(x) | |
sine_merge = self.l_tanh(self.l_linear(sine_wavs)) | |
# source for noise branch, in the same shape as uv | |
noise = torch.randn_like(uv) * self.sine_amp / 3 | |
return sine_merge, noise, uv | |
def padDiff(x): | |
return F.pad( | |
F.pad(x, (0, 0, -1, 1), "constant", 0) - x, (0, 0, 0, -1), "constant", 0 | |
) | |
class Generator(torch.nn.Module): | |
def __init__( | |
self, | |
style_dim, | |
resblock_kernel_sizes, | |
upsample_rates, | |
upsample_initial_channel, | |
resblock_dilation_sizes, | |
upsample_kernel_sizes, | |
gen_istft_n_fft, | |
gen_istft_hop_size, | |
): | |
super(Generator, self).__init__() | |
self.num_kernels = len(resblock_kernel_sizes) | |
self.num_upsamples = len(upsample_rates) | |
resblock = AdaINResBlock1 | |
self.m_source = SourceModuleHnNSF( | |
sampling_rate=24000, | |
upsample_scale=np.prod(upsample_rates) * gen_istft_hop_size, | |
harmonic_num=8, | |
voiced_threshod=10, | |
) | |
self.f0_upsamp = torch.nn.Upsample( | |
scale_factor=np.prod(upsample_rates) * gen_istft_hop_size | |
) | |
self.noise_convs = nn.ModuleList() | |
self.noise_res = nn.ModuleList() | |
self.ups = nn.ModuleList() | |
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): | |
self.ups.append( | |
weight_norm( | |
ConvTranspose1d( | |
upsample_initial_channel // (2**i), | |
upsample_initial_channel // (2 ** (i + 1)), | |
k, | |
u, | |
padding=(k - u) // 2, | |
) | |
) | |
) | |
self.resblocks = nn.ModuleList() | |
for i in range(len(self.ups)): | |
ch = upsample_initial_channel // (2 ** (i + 1)) | |
for j, (k, d) in enumerate( | |
zip(resblock_kernel_sizes, resblock_dilation_sizes) | |
): | |
self.resblocks.append(resblock(ch, k, d, style_dim)) | |
c_cur = upsample_initial_channel // (2 ** (i + 1)) | |
if i + 1 < len(upsample_rates): # | |
stride_f0 = np.prod(upsample_rates[i + 1 :]) | |
self.noise_convs.append( | |
Conv1d( | |
gen_istft_n_fft + 2, | |
c_cur, | |
kernel_size=stride_f0 * 2, | |
stride=stride_f0, | |
padding=(stride_f0 + 1) // 2, | |
) | |
) | |
self.noise_res.append(resblock(c_cur, 7, [1, 3, 5], style_dim)) | |
else: | |
self.noise_convs.append( | |
Conv1d(gen_istft_n_fft + 2, c_cur, kernel_size=1) | |
) | |
self.noise_res.append(resblock(c_cur, 11, [1, 3, 5], style_dim)) | |
self.post_n_fft = gen_istft_n_fft | |
self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3)) | |
self.ups.apply(init_weights) | |
self.conv_post.apply(init_weights) | |
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0)) | |
self.stft = TorchSTFT( | |
filter_length=gen_istft_n_fft, | |
hop_length=gen_istft_hop_size, | |
win_length=gen_istft_n_fft, | |
) | |
def forward(self, x, s, f0): | |
with torch.no_grad(): | |
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t | |
har_source, noi_source, uv = self.m_source(f0) | |
har_source = har_source.transpose(1, 2).squeeze(1) | |
har_spec, har_phase = self.stft.transform(har_source) | |
har = torch.cat([har_spec, har_phase], dim=1) | |
for i in range(self.num_upsamples): | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
x_source = self.noise_convs[i](har) | |
x_source = self.noise_res[i](x_source, s) | |
x = self.ups[i](x) | |
if i == self.num_upsamples - 1: | |
x = self.reflection_pad(x) | |
x = x + x_source | |
xs = None | |
for j in range(self.num_kernels): | |
if xs is None: | |
xs = self.resblocks[i * self.num_kernels + j](x, s) | |
else: | |
xs += self.resblocks[i * self.num_kernels + j](x, s) | |
x = xs / self.num_kernels | |
x = F.leaky_relu(x) | |
x = self.conv_post(x) | |
spec = torch.exp(x[:, : self.post_n_fft // 2 + 1, :]) | |
phase = torch.sin(x[:, self.post_n_fft // 2 + 1 :, :]) | |
return self.stft.inverse(spec, phase) | |
def fw_phase(self, x, s): | |
for i in range(self.num_upsamples): | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
x = self.ups[i](x) | |
xs = None | |
for j in range(self.num_kernels): | |
if xs is None: | |
xs = self.resblocks[i * self.num_kernels + j](x, s) | |
else: | |
xs += self.resblocks[i * self.num_kernels + j](x, s) | |
x = xs / self.num_kernels | |
x = F.leaky_relu(x) | |
x = self.reflection_pad(x) | |
x = self.conv_post(x) | |
spec = torch.exp(x[:, : self.post_n_fft // 2 + 1, :]) | |
phase = torch.sin(x[:, self.post_n_fft // 2 + 1 :, :]) | |
return spec, phase | |
def remove_weight_norm(self): | |
print("Removing weight norm...") | |
for l in self.ups: | |
remove_weight_norm(l) | |
for l in self.resblocks: | |
l.remove_weight_norm() | |
remove_weight_norm(self.conv_pre) | |
remove_weight_norm(self.conv_post) | |
class AdainResBlk1d(nn.Module): | |
def __init__( | |
self, | |
dim_in, | |
dim_out, | |
style_dim=64, | |
actv=nn.LeakyReLU(0.2), | |
upsample="none", | |
dropout_p=0.0, | |
): | |
super().__init__() | |
self.actv = actv | |
self.upsample_type = upsample | |
self.upsample = UpSample1d(upsample) | |
self.learned_sc = dim_in != dim_out | |
self._build_weights(dim_in, dim_out, style_dim) | |
self.dropout = nn.Dropout(dropout_p) | |
if upsample == "none": | |
self.pool = nn.Identity() | |
else: | |
self.pool = weight_norm( | |
nn.ConvTranspose1d( | |
dim_in, | |
dim_in, | |
kernel_size=3, | |
stride=2, | |
groups=dim_in, | |
padding=1, | |
output_padding=1, | |
) | |
) | |
def _build_weights(self, dim_in, dim_out, style_dim): | |
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1)) | |
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1)) | |
self.norm1 = AdaIN1d(style_dim, dim_in) | |
self.norm2 = AdaIN1d(style_dim, dim_out) | |
if self.learned_sc: | |
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False)) | |
def _shortcut(self, x): | |
x = self.upsample(x) | |
if self.learned_sc: | |
x = self.conv1x1(x) | |
return x | |
def _residual(self, x, s): | |
x = self.norm1(x, s) | |
x = self.actv(x) | |
x = self.pool(x) | |
x = self.conv1(self.dropout(x)) | |
x = self.norm2(x, s) | |
x = self.actv(x) | |
x = self.conv2(self.dropout(x)) | |
return x | |
def forward(self, x, s): | |
out = self._residual(x, s) | |
out = (out + self._shortcut(x)) / math.sqrt(2) | |
return out | |
class UpSample1d(nn.Module): | |
def __init__(self, layer_type): | |
super().__init__() | |
self.layer_type = layer_type | |
def forward(self, x): | |
if self.layer_type == "none": | |
return x | |
else: | |
return F.interpolate(x, scale_factor=2, mode="nearest") | |
class Decoder(nn.Module): | |
def __init__( | |
self, | |
dim_in=512, | |
F0_channel=512, | |
style_dim=64, | |
dim_out=80, | |
resblock_kernel_sizes=[3, 7, 11], | |
upsample_rates=[10, 6], | |
upsample_initial_channel=512, | |
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], | |
upsample_kernel_sizes=[20, 12], | |
gen_istft_n_fft=20, | |
gen_istft_hop_size=5, | |
): | |
super().__init__() | |
self.decode = nn.ModuleList() | |
self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim) | |
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim)) | |
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim)) | |
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim)) | |
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True)) | |
self.F0_conv = weight_norm( | |
nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1) | |
) | |
self.N_conv = weight_norm( | |
nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1) | |
) | |
self.asr_res = nn.Sequential( | |
weight_norm(nn.Conv1d(512, 64, kernel_size=1)), | |
) | |
self.generator = Generator( | |
style_dim, | |
resblock_kernel_sizes, | |
upsample_rates, | |
upsample_initial_channel, | |
resblock_dilation_sizes, | |
upsample_kernel_sizes, | |
gen_istft_n_fft, | |
gen_istft_hop_size, | |
) | |
def forward(self, asr, F0_curve, N, s): | |
if self.training: | |
downlist = [0, 3, 7] | |
F0_down = downlist[random.randint(0, 2)] | |
downlist = [0, 3, 7, 15] | |
N_down = downlist[random.randint(0, 3)] | |
if F0_down: | |
F0_curve = ( | |
nn.functional.conv1d( | |
F0_curve.unsqueeze(1), | |
torch.ones(1, 1, F0_down).to("cuda"), | |
padding=F0_down // 2, | |
).squeeze(1) | |
/ F0_down | |
) | |
if N_down: | |
N = ( | |
nn.functional.conv1d( | |
N.unsqueeze(1), | |
torch.ones(1, 1, N_down).to("cuda"), | |
padding=N_down // 2, | |
).squeeze(1) | |
/ N_down | |
) | |
F0 = self.F0_conv(F0_curve.unsqueeze(1)) | |
N = self.N_conv(N.unsqueeze(1)) | |
x = torch.cat([asr, F0, N], axis=1) | |
x = self.encode(x, s) | |
asr_res = self.asr_res(asr) | |
res = True | |
for block in self.decode: | |
if res: | |
x = torch.cat([x, asr_res, F0, N], axis=1) | |
x = block(x, s) | |
if block.upsample_type != "none": | |
res = False | |
x = self.generator(x, s, F0_curve) | |
return x | |