Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from torchdiffeq import odeint | |
# https://github.com/willisma/SiT/blob/main/transport/integrators.py#L77 | |
class ODE: | |
"""ODE solver class""" | |
def __init__( | |
self, | |
*, | |
t0, | |
t1, | |
sampler_type, | |
num_steps, | |
atol, | |
rtol, | |
): | |
assert t0 < t1, "ODE sampler has to be in forward time" | |
self.t = torch.linspace(t0, t1, num_steps) | |
self.atol = atol | |
self.rtol = rtol | |
self.sampler_type = sampler_type | |
def time_linear_to_Timesteps(self, t, t_start, t_end, T_start, T_end): | |
# T = k * t + b | |
k = (T_end - T_start) / (t_end - t_start) | |
b = T_start - t_start * k | |
return k * t + b | |
def sample(self, x, model, T_start, T_end, **model_kwargs): | |
device = x[0].device if isinstance(x, tuple) else x.device | |
def _fn(t, x): | |
t = torch.ones(x[0].size(0)).to(device) * t if isinstance(x, tuple) else torch.ones(x.size(0)).to(device) * t | |
model_output = model(x, self.time_linear_to_Timesteps(t, 0, 1, T_start, T_end), **model_kwargs) | |
assert model_output.shape == x.shape, "Output shape from ODE solver must match input shape" | |
return model_output | |
t = self.t.to(device) | |
atol = [self.atol] * len(x) if isinstance(x, tuple) else [self.atol] | |
rtol = [self.rtol] * len(x) if isinstance(x, tuple) else [self.rtol] | |
samples = odeint( | |
_fn, | |
x, | |
t, | |
method=self.sampler_type, | |
atol=atol, | |
rtol=rtol | |
) | |
return samples | |