Shivdutta commited on
Commit
ac54f42
·
verified ·
1 Parent(s): 76faece

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -6
app.py CHANGED
@@ -72,7 +72,7 @@ def respond(
72
  outputs += output
73
  yield outputs
74
 
75
- def create_interface(description):
76
  return gr.ChatInterface(
77
  respond,
78
  additional_inputs=[
@@ -106,8 +106,8 @@ def create_interface(description):
106
  undo_btn="Undo",
107
  clear_btn="Clear",
108
  submit_btn="Send",
109
- title=f"{description}",
110
- description=description,
111
  chatbot=gr.Chatbot(
112
  scale=1,
113
  likeable=False,
@@ -116,10 +116,11 @@ def create_interface(description):
116
  )
117
 
118
  # Description for the interface
119
- description = """<p align="center">S29-phi35-qlora-finefuned-gguf</p>"""
120
-
 
121
  # Create interface with dropdown for model selection
122
- interface = create_interface(description)
123
 
124
  # Gradio Blocks
125
  demo = gr.Blocks()
 
72
  outputs += output
73
  yield outputs
74
 
75
+ def create_interface(title,description):
76
  return gr.ChatInterface(
77
  respond,
78
  additional_inputs=[
 
106
  undo_btn="Undo",
107
  clear_btn="Clear",
108
  submit_btn="Send",
109
+ title=f"{title}",
110
+ description=f"{description}",
111
  chatbot=gr.Chatbot(
112
  scale=1,
113
  likeable=False,
 
116
  )
117
 
118
  # Description for the interface
119
+ title = """<p align="center">S29-phi35-qlora-finefuned-gguf</p>"""
120
+ description="Phi-3.5-mini is a lightweight, state-of-the-art open model built upon datasets used for Phi-3 - synthetic data and filtered publicly available websites - with a focus on very high-quality, reasoning dense data. The model belongs to the Phi-3 model family and supports 128K token context length. The model underwent a rigorous enhancement process, incorporating both supervised fine-tuning, proximal policy optimization, and direct preference optimization to ensure precise instruction adherence and robust safety measures. This demo utilises a fine tuned version of Phi3.5 instruct model using QLora on OpenAssist dataset - a human-generated, human-annotated assistant-style conversation corpus consisting of 161,443 messages in 35 different languages, annotated with 461,292 quality ratings, resulting in over 10,000 fully annotated conversation trees.",
121
+
122
  # Create interface with dropdown for model selection
123
+ interface = create_interface(title,description)
124
 
125
  # Gradio Blocks
126
  demo = gr.Blocks()