Spaces:
Sleeping
Sleeping
import gradio as gr | |
from PIL import Image | |
import numpy as np | |
import os | |
import uuid | |
def inference(input_img): | |
temp = uuid.uuid4() | |
shell = f"python yolov9/detect.py --source {input_img} --img 640 --device cpu --weights yolov9/runs/train/exp/weights/best.pt --name {temp}" | |
os.system(shell) | |
return f"yolov9/runs/detect/{temp}/{input_img.split('/')[-1]}" | |
def inference_video(input_img): | |
org_img = input_img | |
return input_img | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# Vehicle detection using Yolo-v9 | |
Upload the vehicle image or video for detection | |
""" | |
) | |
with gr.Tab("Video"): | |
gr.Markdown( | |
""" | |
Upload video mp4 file and detect the count of vehicles passing by | |
""" | |
) | |
gr.Markdown( | |
""" | |
Upload image file and detect vehicles present in the image | |
""" | |
) | |
with gr.Row(): | |
img_input = [gr.Video(label="Input Image",width=300, height=300)] | |
pred_outputs = [gr.Video(label="Output Image",width=300, height=300)] | |
image_button = gr.Button("Predict") | |
image_button.click(inference, inputs=img_input, outputs=pred_outputs) | |
with gr.Tab("Image"): | |
gr.Markdown( | |
""" | |
Upload image file and detect vehicles present in the image | |
""" | |
) | |
with gr.Row(): | |
img_input = [gr.Image(type="filepath",label="Input Image",width=300, height=300)] | |
pred_outputs = [gr.Image(label="Output Image",width=640, height=640)] | |
image_button = gr.Button("Predict") | |
image_button.click(inference, inputs=img_input, outputs=pred_outputs) | |
demo.launch(share=True) | |