S15-YOLOV9 / yolov9 /hubconf.py
Shivdutta's picture
Upload 242 files
6e11613 verified
raw
history blame
4.66 kB
import torch
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
"""Creates or loads a YOLO model
Arguments:
name (str): model name 'yolov3' or path 'path/to/best.pt'
pretrained (bool): load pretrained weights into the model
channels (int): number of input channels
classes (int): number of model classes
autoshape (bool): apply YOLO .autoshape() wrapper to model
verbose (bool): print all information to screen
device (str, torch.device, None): device to use for model parameters
Returns:
YOLO model
"""
from pathlib import Path
from models.common import AutoShape, DetectMultiBackend
from models.experimental import attempt_load
from models.yolo import ClassificationModel, DetectionModel, SegmentationModel
from utils.downloads import attempt_download
from utils.general import LOGGER, check_requirements, intersect_dicts, logging
from utils.torch_utils import select_device
if not verbose:
LOGGER.setLevel(logging.WARNING)
check_requirements(exclude=('opencv-python', 'tensorboard', 'thop'))
name = Path(name)
path = name.with_suffix('.pt') if name.suffix == '' and not name.is_dir() else name # checkpoint path
try:
device = select_device(device)
if pretrained and channels == 3 and classes == 80:
try:
model = DetectMultiBackend(path, device=device, fuse=autoshape) # detection model
if autoshape:
if model.pt and isinstance(model.model, ClassificationModel):
LOGGER.warning('WARNING ⚠️ YOLO ClassificationModel is not yet AutoShape compatible. '
'You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224).')
elif model.pt and isinstance(model.model, SegmentationModel):
LOGGER.warning('WARNING ⚠️ YOLO SegmentationModel is not yet AutoShape compatible. '
'You will not be able to run inference with this model.')
else:
model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
except Exception:
model = attempt_load(path, device=device, fuse=False) # arbitrary model
else:
cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0] # model.yaml path
model = DetectionModel(cfg, channels, classes) # create model
if pretrained:
ckpt = torch.load(attempt_download(path), map_location=device) # load
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) # intersect
model.load_state_dict(csd, strict=False) # load
if len(ckpt['model'].names) == classes:
model.names = ckpt['model'].names # set class names attribute
if not verbose:
LOGGER.setLevel(logging.INFO) # reset to default
return model.to(device)
except Exception as e:
help_url = 'https://github.com/ultralytics/yolov5/issues/36'
s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.'
raise Exception(s) from e
def custom(path='path/to/model.pt', autoshape=True, _verbose=True, device=None):
# YOLO custom or local model
return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
if __name__ == '__main__':
import argparse
from pathlib import Path
import numpy as np
from PIL import Image
from utils.general import cv2, print_args
# Argparser
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default='yolo', help='model name')
opt = parser.parse_args()
print_args(vars(opt))
# Model
model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)
# model = custom(path='path/to/model.pt') # custom
# Images
imgs = [
'data/images/zidane.jpg', # filename
Path('data/images/zidane.jpg'), # Path
'https://ultralytics.com/images/zidane.jpg', # URI
cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
Image.open('data/images/bus.jpg'), # PIL
np.zeros((320, 640, 3))] # numpy
# Inference
results = model(imgs, size=320) # batched inference
# Results
results.print()
results.save()