Spaces:
Sleeping
Sleeping
import torch | |
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): | |
"""Creates or loads a YOLO model | |
Arguments: | |
name (str): model name 'yolov3' or path 'path/to/best.pt' | |
pretrained (bool): load pretrained weights into the model | |
channels (int): number of input channels | |
classes (int): number of model classes | |
autoshape (bool): apply YOLO .autoshape() wrapper to model | |
verbose (bool): print all information to screen | |
device (str, torch.device, None): device to use for model parameters | |
Returns: | |
YOLO model | |
""" | |
from pathlib import Path | |
from models.common import AutoShape, DetectMultiBackend | |
from models.experimental import attempt_load | |
from models.yolo import ClassificationModel, DetectionModel, SegmentationModel | |
from utils.downloads import attempt_download | |
from utils.general import LOGGER, check_requirements, intersect_dicts, logging | |
from utils.torch_utils import select_device | |
if not verbose: | |
LOGGER.setLevel(logging.WARNING) | |
check_requirements(exclude=('opencv-python', 'tensorboard', 'thop')) | |
name = Path(name) | |
path = name.with_suffix('.pt') if name.suffix == '' and not name.is_dir() else name # checkpoint path | |
try: | |
device = select_device(device) | |
if pretrained and channels == 3 and classes == 80: | |
try: | |
model = DetectMultiBackend(path, device=device, fuse=autoshape) # detection model | |
if autoshape: | |
if model.pt and isinstance(model.model, ClassificationModel): | |
LOGGER.warning('WARNING ⚠️ YOLO ClassificationModel is not yet AutoShape compatible. ' | |
'You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224).') | |
elif model.pt and isinstance(model.model, SegmentationModel): | |
LOGGER.warning('WARNING ⚠️ YOLO SegmentationModel is not yet AutoShape compatible. ' | |
'You will not be able to run inference with this model.') | |
else: | |
model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS | |
except Exception: | |
model = attempt_load(path, device=device, fuse=False) # arbitrary model | |
else: | |
cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0] # model.yaml path | |
model = DetectionModel(cfg, channels, classes) # create model | |
if pretrained: | |
ckpt = torch.load(attempt_download(path), map_location=device) # load | |
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 | |
csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) # intersect | |
model.load_state_dict(csd, strict=False) # load | |
if len(ckpt['model'].names) == classes: | |
model.names = ckpt['model'].names # set class names attribute | |
if not verbose: | |
LOGGER.setLevel(logging.INFO) # reset to default | |
return model.to(device) | |
except Exception as e: | |
help_url = 'https://github.com/ultralytics/yolov5/issues/36' | |
s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.' | |
raise Exception(s) from e | |
def custom(path='path/to/model.pt', autoshape=True, _verbose=True, device=None): | |
# YOLO custom or local model | |
return _create(path, autoshape=autoshape, verbose=_verbose, device=device) | |
if __name__ == '__main__': | |
import argparse | |
from pathlib import Path | |
import numpy as np | |
from PIL import Image | |
from utils.general import cv2, print_args | |
# Argparser | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--model', type=str, default='yolo', help='model name') | |
opt = parser.parse_args() | |
print_args(vars(opt)) | |
# Model | |
model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) | |
# model = custom(path='path/to/model.pt') # custom | |
# Images | |
imgs = [ | |
'data/images/zidane.jpg', # filename | |
Path('data/images/zidane.jpg'), # Path | |
'https://ultralytics.com/images/zidane.jpg', # URI | |
cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV | |
Image.open('data/images/bus.jpg'), # PIL | |
np.zeros((320, 640, 3))] # numpy | |
# Inference | |
results = model(imgs, size=320) # batched inference | |
# Results | |
results.print() | |
results.save() | |