Spaces:
Sleeping
Sleeping
import argparse | |
import platform | |
import sys | |
import time | |
from pathlib import Path | |
import pandas as pd | |
FILE = Path(__file__).resolve() | |
ROOT = FILE.parents[0] # YOLO root directory | |
if str(ROOT) not in sys.path: | |
sys.path.append(str(ROOT)) # add ROOT to PATH | |
# ROOT = ROOT.relative_to(Path.cwd()) # relative | |
import export | |
from models.experimental import attempt_load | |
from models.yolo import SegmentationModel | |
from segment.val import run as val_seg | |
from utils import notebook_init | |
from utils.general import LOGGER, check_yaml, file_size, print_args | |
from utils.torch_utils import select_device | |
from val import run as val_det | |
def run( | |
weights=ROOT / 'yolo.pt', # weights path | |
imgsz=640, # inference size (pixels) | |
batch_size=1, # batch size | |
data=ROOT / 'data/coco.yaml', # dataset.yaml path | |
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu | |
half=False, # use FP16 half-precision inference | |
test=False, # test exports only | |
pt_only=False, # test PyTorch only | |
hard_fail=False, # throw error on benchmark failure | |
): | |
y, t = [], time.time() | |
device = select_device(device) | |
model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc. | |
for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU) | |
try: | |
assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported | |
assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML | |
if 'cpu' in device.type: | |
assert cpu, 'inference not supported on CPU' | |
if 'cuda' in device.type: | |
assert gpu, 'inference not supported on GPU' | |
# Export | |
if f == '-': | |
w = weights # PyTorch format | |
else: | |
w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others | |
assert suffix in str(w), 'export failed' | |
# Validate | |
if model_type == SegmentationModel: | |
result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half) | |
metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls)) | |
else: # DetectionModel: | |
result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half) | |
metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls)) | |
speed = result[2][1] # times (preprocess, inference, postprocess) | |
y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference | |
except Exception as e: | |
if hard_fail: | |
assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}' | |
LOGGER.warning(f'WARNING ⚠️ Benchmark failure for {name}: {e}') | |
y.append([name, None, None, None]) # mAP, t_inference | |
if pt_only and i == 0: | |
break # break after PyTorch | |
# Print results | |
LOGGER.info('\n') | |
parse_opt() | |
notebook_init() # print system info | |
c = ['Format', 'Size (MB)', 'mAP50-95', 'Inference time (ms)'] if map else ['Format', 'Export', '', ''] | |
py = pd.DataFrame(y, columns=c) | |
LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)') | |
LOGGER.info(str(py if map else py.iloc[:, :2])) | |
if hard_fail and isinstance(hard_fail, str): | |
metrics = py['mAP50-95'].array # values to compare to floor | |
floor = eval(hard_fail) # minimum metric floor to pass | |
assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: mAP50-95 < floor {floor}' | |
return py | |
def test( | |
weights=ROOT / 'yolo.pt', # weights path | |
imgsz=640, # inference size (pixels) | |
batch_size=1, # batch size | |
data=ROOT / 'data/coco128.yaml', # dataset.yaml path | |
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu | |
half=False, # use FP16 half-precision inference | |
test=False, # test exports only | |
pt_only=False, # test PyTorch only | |
hard_fail=False, # throw error on benchmark failure | |
): | |
y, t = [], time.time() | |
device = select_device(device) | |
for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable) | |
try: | |
w = weights if f == '-' else \ | |
export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # weights | |
assert suffix in str(w), 'export failed' | |
y.append([name, True]) | |
except Exception: | |
y.append([name, False]) # mAP, t_inference | |
# Print results | |
LOGGER.info('\n') | |
parse_opt() | |
notebook_init() # print system info | |
py = pd.DataFrame(y, columns=['Format', 'Export']) | |
LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)') | |
LOGGER.info(str(py)) | |
return py | |
def parse_opt(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--weights', type=str, default=ROOT / 'yolo.pt', help='weights path') | |
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)') | |
parser.add_argument('--batch-size', type=int, default=1, help='batch size') | |
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') | |
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') | |
parser.add_argument('--test', action='store_true', help='test exports only') | |
parser.add_argument('--pt-only', action='store_true', help='test PyTorch only') | |
parser.add_argument('--hard-fail', nargs='?', const=True, default=False, help='Exception on error or < min metric') | |
opt = parser.parse_args() | |
opt.data = check_yaml(opt.data) # check YAML | |
print_args(vars(opt)) | |
return opt | |
def main(opt): | |
test(**vars(opt)) if opt.test else run(**vars(opt)) | |
if __name__ == "__main__": | |
opt = parse_opt() | |
main(opt) | |