kohya_ss / kohya_gui /finetune_gui.py
Shinguitar's picture
Upload folder using huggingface_hub
f889344 verified
import gradio as gr
import json
import math
import os
import subprocess
import time
import sys
import toml
from datetime import datetime
from .common_gui import (
check_if_model_exist,
color_aug_changed,
get_executable_path,
get_file_path,
get_saveasfile_path,
print_command_and_toml,
run_cmd_advanced_training,
SaveConfigFile,
scriptdir,
update_my_data,
validate_file_path, validate_folder_path, validate_model_path,
validate_args_setting, setup_environment,
)
from .class_accelerate_launch import AccelerateLaunch
from .class_configuration_file import ConfigurationFile
from .class_source_model import SourceModel
from .class_basic_training import BasicTraining
from .class_advanced_training import AdvancedTraining
from .class_folders import Folders
from .class_sdxl_parameters import SDXLParameters
from .class_command_executor import CommandExecutor
from .class_tensorboard import TensorboardManager
from .class_sample_images import SampleImages, create_prompt_file
from .class_huggingface import HuggingFace
from .class_metadata import MetaData
from .class_gui_config import KohyaSSGUIConfig
from .custom_logging import setup_logging
# Set up logging
log = setup_logging()
# Setup command executor
executor = None
# Setup huggingface
huggingface = None
use_shell = False
train_state_value = time.time()
folder_symbol = "\U0001f4c2" # πŸ“‚
refresh_symbol = "\U0001f504" # πŸ”„
save_style_symbol = "\U0001f4be" # πŸ’Ύ
document_symbol = "\U0001F4C4" # πŸ“„
PYTHON = sys.executable
presets_dir = rf"{scriptdir}/presets"
def save_configuration(
save_as_bool,
file_path,
pretrained_model_name_or_path,
v2,
v_parameterization,
sdxl_checkbox,
train_dir,
image_folder,
output_dir,
dataset_config,
logging_dir,
max_resolution,
min_bucket_reso,
max_bucket_reso,
batch_size,
flip_aug,
masked_loss,
caption_metadata_filename,
latent_metadata_filename,
full_path,
learning_rate,
lr_scheduler,
lr_warmup,
dataset_repeats,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
learning_rate_te,
learning_rate_te1,
learning_rate_te2,
train_text_encoder,
full_bf16,
create_caption,
create_buckets,
save_model_as,
caption_extension,
# use_8bit_adam,
xformers,
clip_skip,
dynamo_backend,
dynamo_mode,
dynamo_use_fullgraph,
dynamo_use_dynamic,
extra_accelerate_launch_args,
num_processes,
num_machines,
multi_gpu,
gpu_ids,
main_process_port,
save_state,
save_state_on_train_end,
resume,
gradient_checkpointing,
gradient_accumulation_steps,
block_lr,
mem_eff_attn,
shuffle_caption,
output_name,
max_token_length,
max_train_epochs,
max_train_steps,
max_data_loader_n_workers,
full_fp16,
color_aug,
model_list,
cache_latents,
cache_latents_to_disk,
use_latent_files,
keep_tokens,
persistent_data_loader_workers,
bucket_no_upscale,
random_crop,
bucket_reso_steps,
v_pred_like_loss,
caption_dropout_every_n_epochs,
caption_dropout_rate,
optimizer,
optimizer_args,
lr_scheduler_args,
noise_offset_type,
noise_offset,
noise_offset_random_strength,
adaptive_noise_scale,
multires_noise_iterations,
multires_noise_discount,
ip_noise_gamma,
ip_noise_gamma_random_strength,
sample_every_n_steps,
sample_every_n_epochs,
sample_sampler,
sample_prompts,
additional_parameters,
loss_type,
huber_schedule,
huber_c,
vae_batch_size,
min_snr_gamma,
weighted_captions,
save_every_n_steps,
save_last_n_steps,
save_last_n_steps_state,
log_with,
wandb_api_key,
wandb_run_name,
log_tracker_name,
log_tracker_config,
scale_v_pred_loss_like_noise_pred,
sdxl_cache_text_encoder_outputs,
sdxl_no_half_vae,
min_timestep,
max_timestep,
debiased_estimation_loss,
huggingface_repo_id,
huggingface_token,
huggingface_repo_type,
huggingface_repo_visibility,
huggingface_path_in_repo,
save_state_to_huggingface,
resume_from_huggingface,
async_upload,
metadata_author,
metadata_description,
metadata_license,
metadata_tags,
metadata_title,
):
# Get list of function parameters and values
parameters = list(locals().items())
original_file_path = file_path
if save_as_bool:
log.info("Save as...")
file_path = get_saveasfile_path(file_path)
else:
log.info("Save...")
if file_path == None or file_path == "":
file_path = get_saveasfile_path(file_path)
# log.info(file_path)
if file_path == None or file_path == "":
return original_file_path # In case a file_path was provided and the user decide to cancel the open action
# Extract the destination directory from the file path
destination_directory = os.path.dirname(file_path)
# Create the destination directory if it doesn't exist
if not os.path.exists(destination_directory):
os.makedirs(destination_directory)
SaveConfigFile(
parameters=parameters,
file_path=file_path,
exclusion=["file_path", "save_as"],
)
return file_path
def open_configuration(
ask_for_file,
apply_preset,
file_path,
pretrained_model_name_or_path,
v2,
v_parameterization,
sdxl_checkbox,
train_dir,
image_folder,
output_dir,
dataset_config,
logging_dir,
max_resolution,
min_bucket_reso,
max_bucket_reso,
batch_size,
flip_aug,
masked_loss,
caption_metadata_filename,
latent_metadata_filename,
full_path,
learning_rate,
lr_scheduler,
lr_warmup,
dataset_repeats,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
learning_rate_te,
learning_rate_te1,
learning_rate_te2,
train_text_encoder,
full_bf16,
create_caption,
create_buckets,
save_model_as,
caption_extension,
# use_8bit_adam,
xformers,
clip_skip,
dynamo_backend,
dynamo_mode,
dynamo_use_fullgraph,
dynamo_use_dynamic,
extra_accelerate_launch_args,
num_processes,
num_machines,
multi_gpu,
gpu_ids,
main_process_port,
save_state,
save_state_on_train_end,
resume,
gradient_checkpointing,
gradient_accumulation_steps,
block_lr,
mem_eff_attn,
shuffle_caption,
output_name,
max_token_length,
max_train_epochs,
max_train_steps,
max_data_loader_n_workers,
full_fp16,
color_aug,
model_list,
cache_latents,
cache_latents_to_disk,
use_latent_files,
keep_tokens,
persistent_data_loader_workers,
bucket_no_upscale,
random_crop,
bucket_reso_steps,
v_pred_like_loss,
caption_dropout_every_n_epochs,
caption_dropout_rate,
optimizer,
optimizer_args,
lr_scheduler_args,
noise_offset_type,
noise_offset,
noise_offset_random_strength,
adaptive_noise_scale,
multires_noise_iterations,
multires_noise_discount,
ip_noise_gamma,
ip_noise_gamma_random_strength,
sample_every_n_steps,
sample_every_n_epochs,
sample_sampler,
sample_prompts,
additional_parameters,
loss_type,
huber_schedule,
huber_c,
vae_batch_size,
min_snr_gamma,
weighted_captions,
save_every_n_steps,
save_last_n_steps,
save_last_n_steps_state,
log_with,
wandb_api_key,
wandb_run_name,
log_tracker_name,
log_tracker_config,
scale_v_pred_loss_like_noise_pred,
sdxl_cache_text_encoder_outputs,
sdxl_no_half_vae,
min_timestep,
max_timestep,
debiased_estimation_loss,
huggingface_repo_id,
huggingface_token,
huggingface_repo_type,
huggingface_repo_visibility,
huggingface_path_in_repo,
save_state_to_huggingface,
resume_from_huggingface,
async_upload,
metadata_author,
metadata_description,
metadata_license,
metadata_tags,
metadata_title,
training_preset,
):
# Get list of function parameters and values
parameters = list(locals().items())
# Check if we are "applying" a preset or a config
if apply_preset:
log.info(f"Applying preset {training_preset}...")
file_path = rf"{presets_dir}/finetune/{training_preset}.json"
else:
# If not applying a preset, set the `training_preset` field to an empty string
# Find the index of the `training_preset` parameter using the `index()` method
training_preset_index = parameters.index(("training_preset", training_preset))
# Update the value of `training_preset` by directly assigning an empty string value
parameters[training_preset_index] = ("training_preset", "")
original_file_path = file_path
if ask_for_file:
file_path = get_file_path(file_path)
if not file_path == "" and not file_path == None:
# load variables from JSON file
with open(file_path, "r", encoding="utf-8") as f:
my_data = json.load(f)
log.info("Loading config...")
# Update values to fix deprecated use_8bit_adam checkbox and set appropriate optimizer if it is set to True
my_data = update_my_data(my_data)
else:
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
my_data = {}
values = [file_path]
for key, value in parameters:
json_value = my_data.get(key)
# Set the value in the dictionary to the corresponding value in `my_data`, or the default value if not found
if not key in ["ask_for_file", "apply_preset", "file_path"]:
values.append(json_value if json_value is not None else value)
return tuple(values)
def train_model(
headless,
print_only,
pretrained_model_name_or_path,
v2,
v_parameterization,
sdxl_checkbox,
train_dir,
image_folder,
output_dir,
dataset_config,
logging_dir,
max_resolution,
min_bucket_reso,
max_bucket_reso,
batch_size,
flip_aug,
masked_loss,
caption_metadata_filename,
latent_metadata_filename,
full_path,
learning_rate,
lr_scheduler,
lr_warmup,
dataset_repeats,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
learning_rate_te,
learning_rate_te1,
learning_rate_te2,
train_text_encoder,
full_bf16,
generate_caption_database,
generate_image_buckets,
save_model_as,
caption_extension,
# use_8bit_adam,
xformers,
clip_skip,
dynamo_backend,
dynamo_mode,
dynamo_use_fullgraph,
dynamo_use_dynamic,
extra_accelerate_launch_args,
num_processes,
num_machines,
multi_gpu,
gpu_ids,
main_process_port,
save_state,
save_state_on_train_end,
resume,
gradient_checkpointing,
gradient_accumulation_steps,
block_lr,
mem_eff_attn,
shuffle_caption,
output_name,
max_token_length,
max_train_epochs,
max_train_steps,
max_data_loader_n_workers,
full_fp16,
color_aug,
model_list, # Keep this. Yes, it is unused here but required given the common list used
cache_latents,
cache_latents_to_disk,
use_latent_files,
keep_tokens,
persistent_data_loader_workers,
bucket_no_upscale,
random_crop,
bucket_reso_steps,
v_pred_like_loss,
caption_dropout_every_n_epochs,
caption_dropout_rate,
optimizer,
optimizer_args,
lr_scheduler_args,
noise_offset_type,
noise_offset,
noise_offset_random_strength,
adaptive_noise_scale,
multires_noise_iterations,
multires_noise_discount,
ip_noise_gamma,
ip_noise_gamma_random_strength,
sample_every_n_steps,
sample_every_n_epochs,
sample_sampler,
sample_prompts,
additional_parameters,
loss_type,
huber_schedule,
huber_c,
vae_batch_size,
min_snr_gamma,
weighted_captions,
save_every_n_steps,
save_last_n_steps,
save_last_n_steps_state,
log_with,
wandb_api_key,
wandb_run_name,
log_tracker_name,
log_tracker_config,
scale_v_pred_loss_like_noise_pred,
sdxl_cache_text_encoder_outputs,
sdxl_no_half_vae,
min_timestep,
max_timestep,
debiased_estimation_loss,
huggingface_repo_id,
huggingface_token,
huggingface_repo_type,
huggingface_repo_visibility,
huggingface_path_in_repo,
save_state_to_huggingface,
resume_from_huggingface,
async_upload,
metadata_author,
metadata_description,
metadata_license,
metadata_tags,
metadata_title,
):
# Get list of function parameters and values
parameters = list(locals().items())
global train_state_value
TRAIN_BUTTON_VISIBLE = [
gr.Button(visible=True),
gr.Button(visible=False or headless),
gr.Textbox(value=train_state_value),
]
if executor.is_running():
log.error("Training is already running. Can't start another training session.")
return TRAIN_BUTTON_VISIBLE
log.debug(f"headless = {headless} ; print_only = {print_only}")
log.info(f"Start Finetuning...")
log.info(f"Validating lr scheduler arguments...")
if not validate_args_setting(lr_scheduler_args):
return
log.info(f"Validating optimizer arguments...")
if not validate_args_setting(optimizer_args):
return
if train_dir != "" and not os.path.exists(train_dir):
os.mkdir(train_dir)
#
# Validate paths
#
if not validate_file_path(dataset_config):
return TRAIN_BUTTON_VISIBLE
if not validate_folder_path(image_folder):
return TRAIN_BUTTON_VISIBLE
if not validate_file_path(log_tracker_config):
return TRAIN_BUTTON_VISIBLE
if not validate_folder_path(logging_dir, can_be_written_to=True, create_if_not_exists=True):
return TRAIN_BUTTON_VISIBLE
if not validate_folder_path(output_dir, can_be_written_to=True, create_if_not_exists=True):
return TRAIN_BUTTON_VISIBLE
if not validate_model_path(pretrained_model_name_or_path):
return TRAIN_BUTTON_VISIBLE
if not validate_folder_path(resume):
return TRAIN_BUTTON_VISIBLE
#
# End of path validation
#
# if not validate_paths(
# dataset_config=dataset_config,
# finetune_image_folder=image_folder,
# headless=headless,
# log_tracker_config=log_tracker_config,
# logging_dir=logging_dir,
# output_dir=output_dir,
# pretrained_model_name_or_path=pretrained_model_name_or_path,
# resume=resume,
# ):
# return TRAIN_BUTTON_VISIBLE
if not print_only and check_if_model_exist(
output_name, output_dir, save_model_as, headless
):
return TRAIN_BUTTON_VISIBLE
if dataset_config:
log.info(
"Dataset config toml file used, skipping caption json file, image buckets, total_steps, train_batch_size, gradient_accumulation_steps, epoch, reg_factor, max_train_steps creation..."
)
if max_train_steps == 0:
max_train_steps_info = f"Max train steps: 0. sd-scripts will therefore default to 1600. Please specify a different value if required."
else:
max_train_steps_info = f"Max train steps: {max_train_steps}"
else:
# create caption json file
if generate_caption_database:
# Define the command components
run_cmd = [
PYTHON,
rf"{scriptdir}/sd-scripts/finetune/merge_captions_to_metadata.py",
]
# Add the caption extension
run_cmd.append("--caption_extension")
if caption_extension == "":
run_cmd.append(".caption") # Default extension
else:
run_cmd.append(caption_extension)
# Add paths for the image folder and the caption metadata file
run_cmd.append(rf"{image_folder}")
run_cmd.append(rf"{os.path.join(train_dir, caption_metadata_filename)}")
# Include the full path flag if specified
if full_path:
run_cmd.append("--full_path")
# Log the built command
log.info(" ".join(run_cmd))
# Prepare environment variables
env = setup_environment()
# Execute the command if not just for printing
if not print_only:
subprocess.run(run_cmd, env=env)
# create images buckets
if generate_image_buckets:
# Build the command to run the preparation script
run_cmd = [
PYTHON,
rf"{scriptdir}/sd-scripts/finetune/prepare_buckets_latents.py",
rf"{image_folder}",
rf"{os.path.join(train_dir, caption_metadata_filename)}",
rf"{os.path.join(train_dir, latent_metadata_filename)}",
rf"{pretrained_model_name_or_path}",
"--batch_size",
str(batch_size),
"--max_resolution",
str(max_resolution),
"--min_bucket_reso",
str(min_bucket_reso),
"--max_bucket_reso",
str(max_bucket_reso),
"--mixed_precision",
str(mixed_precision),
]
# Conditional flags
if full_path:
run_cmd.append("--full_path")
if sdxl_checkbox and sdxl_no_half_vae:
log.info(
"Using mixed_precision = no because no half vae is selected..."
)
# Ensure 'no' is correctly handled without extra quotes that might be interpreted literally in command line
run_cmd.append("--mixed_precision=no")
# Log the complete command as a string for clarity
log.info(" ".join(run_cmd))
# Copy and modify environment variables
env = setup_environment()
# Execute the command if not just for printing
if not print_only:
subprocess.run(run_cmd, env=env)
if image_folder == "":
log.error("Image folder dir is empty")
return TRAIN_BUTTON_VISIBLE
image_num = len(
[
f
for f, lower_f in (
(file, file.lower()) for file in os.listdir(image_folder)
)
if lower_f.endswith((".jpg", ".jpeg", ".png", ".webp"))
]
)
log.info(f"image_num = {image_num}")
repeats = int(image_num) * int(dataset_repeats)
log.info(f"repeats = {str(repeats)}")
if max_train_steps == 0:
# calculate max_train_steps
max_train_steps = int(
math.ceil(
float(repeats)
/ int(train_batch_size)
/ int(gradient_accumulation_steps)
* int(epoch)
)
)
# Divide by two because flip augmentation create two copied of the source images
if flip_aug and max_train_steps:
max_train_steps = int(math.ceil(float(max_train_steps) / 2))
if max_train_steps == 0:
max_train_steps_info = f"Max train steps: 0. sd-scripts will therefore default to 1600. Please specify a different value if required."
else:
max_train_steps_info = f"Max train steps: {max_train_steps}"
log.info(max_train_steps_info)
if max_train_steps != 0:
lr_warmup_steps = round(float(int(lr_warmup) * int(max_train_steps) / 100))
else:
lr_warmup_steps = 0
log.info(f"lr_warmup_steps = {lr_warmup_steps}")
accelerate_path = get_executable_path("accelerate")
if accelerate_path == "":
log.error("accelerate not found")
return TRAIN_BUTTON_VISIBLE
run_cmd = [rf'{accelerate_path}', "launch"]
run_cmd = AccelerateLaunch.run_cmd(
run_cmd=run_cmd,
dynamo_backend=dynamo_backend,
dynamo_mode=dynamo_mode,
dynamo_use_fullgraph=dynamo_use_fullgraph,
dynamo_use_dynamic=dynamo_use_dynamic,
num_processes=num_processes,
num_machines=num_machines,
multi_gpu=multi_gpu,
gpu_ids=gpu_ids,
main_process_port=main_process_port,
num_cpu_threads_per_process=num_cpu_threads_per_process,
mixed_precision=mixed_precision,
extra_accelerate_launch_args=extra_accelerate_launch_args,
)
if sdxl_checkbox:
run_cmd.append(rf"{scriptdir}/sd-scripts/sdxl_train.py")
else:
run_cmd.append(rf"{scriptdir}/sd-scripts/fine_tune.py")
in_json = (
f"{train_dir}/{latent_metadata_filename}"
if use_latent_files == "Yes"
else f"{train_dir}/{caption_metadata_filename}"
)
cache_text_encoder_outputs = sdxl_checkbox and sdxl_cache_text_encoder_outputs
no_half_vae = sdxl_checkbox and sdxl_no_half_vae
if max_data_loader_n_workers == "" or None:
max_data_loader_n_workers = 0
else:
max_data_loader_n_workers = int(max_data_loader_n_workers)
if max_train_steps == "" or None:
max_train_steps = 0
else:
max_train_steps = int(max_train_steps)
config_toml_data = {
# Update the values in the TOML data
"adaptive_noise_scale": (
adaptive_noise_scale if adaptive_noise_scale != 0 else None
),
"async_upload": async_upload,
"block_lr": block_lr,
"bucket_no_upscale": bucket_no_upscale,
"bucket_reso_steps": bucket_reso_steps,
"cache_latents": cache_latents,
"cache_latents_to_disk": cache_latents_to_disk,
"cache_text_encoder_outputs": cache_text_encoder_outputs,
"caption_dropout_every_n_epochs": int(caption_dropout_every_n_epochs),
"caption_dropout_rate": caption_dropout_rate,
"caption_extension": caption_extension,
"clip_skip": clip_skip if clip_skip != 0 else None,
"color_aug": color_aug,
"dataset_config": dataset_config,
"dataset_repeats": int(dataset_repeats),
"debiased_estimation_loss": debiased_estimation_loss,
"dynamo_backend": dynamo_backend,
"enable_bucket": True,
"flip_aug": flip_aug,
"full_bf16": full_bf16,
"full_fp16": full_fp16,
"gradient_accumulation_steps": int(gradient_accumulation_steps),
"gradient_checkpointing": gradient_checkpointing,
"huber_c": huber_c,
"huber_schedule": huber_schedule,
"huggingface_repo_id": huggingface_repo_id,
"huggingface_token": huggingface_token,
"huggingface_repo_type": huggingface_repo_type,
"huggingface_repo_visibility": huggingface_repo_visibility,
"huggingface_path_in_repo": huggingface_path_in_repo,
"in_json": in_json,
"ip_noise_gamma": ip_noise_gamma if ip_noise_gamma != 0 else None,
"ip_noise_gamma_random_strength": ip_noise_gamma_random_strength,
"keep_tokens": int(keep_tokens),
"learning_rate": learning_rate, # both for sd1.5 and sdxl
"learning_rate_te": (
learning_rate_te if not sdxl_checkbox else None
), # only for sd1.5
"learning_rate_te1": (
learning_rate_te1 if sdxl_checkbox else None
), # only for sdxl
"learning_rate_te2": (
learning_rate_te2 if sdxl_checkbox else None
), # only for sdxl
"logging_dir": logging_dir,
"log_tracker_name": log_tracker_name,
"log_tracker_config": log_tracker_config,
"loss_type": loss_type,
"lr_scheduler": lr_scheduler,
"lr_scheduler_args": str(lr_scheduler_args).replace('"', "").split(),
"lr_warmup_steps": lr_warmup_steps,
"masked_loss": masked_loss,
"max_bucket_reso": int(max_bucket_reso),
"max_timestep": max_timestep if max_timestep != 0 else None,
"max_token_length": int(max_token_length),
"max_train_epochs": (
int(max_train_epochs) if int(max_train_epochs) != 0 else None
),
"max_train_steps": int(max_train_steps) if int(max_train_steps) != 0 else None,
"mem_eff_attn": mem_eff_attn,
"metadata_author": metadata_author,
"metadata_description": metadata_description,
"metadata_license": metadata_license,
"metadata_tags": metadata_tags,
"metadata_title": metadata_title,
"min_bucket_reso": int(min_bucket_reso),
"min_snr_gamma": min_snr_gamma if min_snr_gamma != 0 else None,
"min_timestep": min_timestep if min_timestep != 0 else None,
"mixed_precision": mixed_precision,
"multires_noise_discount": multires_noise_discount,
"multires_noise_iterations": (
multires_noise_iterations if multires_noise_iterations != 0 else None
),
"no_half_vae": no_half_vae,
"noise_offset": noise_offset if noise_offset != 0 else None,
"noise_offset_random_strength": noise_offset_random_strength,
"noise_offset_type": noise_offset_type,
"optimizer_type": optimizer,
"optimizer_args": str(optimizer_args).replace('"', "").split(),
"output_dir": output_dir,
"output_name": output_name,
"persistent_data_loader_workers": int(persistent_data_loader_workers),
"pretrained_model_name_or_path": pretrained_model_name_or_path,
"random_crop": random_crop,
"resolution": max_resolution,
"resume": resume,
"resume_from_huggingface": resume_from_huggingface,
"sample_every_n_epochs": (
sample_every_n_epochs if sample_every_n_epochs != 0 else None
),
"sample_every_n_steps": (
sample_every_n_steps if sample_every_n_steps != 0 else None
),
"sample_prompts": create_prompt_file(sample_prompts, output_dir),
"sample_sampler": sample_sampler,
"save_every_n_epochs": (
save_every_n_epochs if save_every_n_epochs != 0 else None
),
"save_every_n_steps": save_every_n_steps if save_every_n_steps != 0 else None,
"save_last_n_steps": save_last_n_steps if save_last_n_steps != 0 else None,
"save_last_n_steps_state": (
save_last_n_steps_state if save_last_n_steps_state != 0 else None
),
"save_model_as": save_model_as,
"save_precision": save_precision,
"save_state": save_state,
"save_state_on_train_end": save_state_on_train_end,
"save_state_to_huggingface": save_state_to_huggingface,
"scale_v_pred_loss_like_noise_pred": scale_v_pred_loss_like_noise_pred,
"sdpa": True if xformers == "sdpa" else None,
"seed": int(seed) if int(seed) != 0 else None,
"shuffle_caption": shuffle_caption,
"train_batch_size": train_batch_size,
"train_data_dir": image_folder,
"train_text_encoder": train_text_encoder,
"log_with": log_with,
"v2": v2,
"v_parameterization": v_parameterization,
"v_pred_like_loss": v_pred_like_loss if v_pred_like_loss != 0 else None,
"vae_batch_size": vae_batch_size if vae_batch_size != 0 else None,
"wandb_api_key": wandb_api_key,
"wandb_run_name": wandb_run_name,
"weighted_captions": weighted_captions,
"xformers": True if xformers == "xformers" else None,
}
# Given dictionary `config_toml_data`
# Remove all values = ""
config_toml_data = {
key: value
for key, value in config_toml_data.items()
if value not in ["", False, None]
}
config_toml_data["max_data_loader_n_workers"] = int(max_data_loader_n_workers)
# Sort the dictionary by keys
config_toml_data = dict(sorted(config_toml_data.items()))
current_datetime = datetime.now()
formatted_datetime = current_datetime.strftime("%Y%m%d-%H%M%S")
tmpfilename = fr"{output_dir}/config_finetune-{formatted_datetime}.toml"
# Save the updated TOML data back to the file
with open(tmpfilename, "w", encoding="utf-8") as toml_file:
toml.dump(config_toml_data, toml_file)
if not os.path.exists(toml_file.name):
log.error(f"Failed to write TOML file: {toml_file.name}")
run_cmd.append("--config_file")
run_cmd.append(rf"{tmpfilename}")
# Initialize a dictionary with always-included keyword arguments
kwargs_for_training = {
"additional_parameters": additional_parameters,
}
# Pass the dynamically constructed keyword arguments to the function
run_cmd = run_cmd_advanced_training(run_cmd=run_cmd, **kwargs_for_training)
if print_only:
print_command_and_toml(run_cmd, tmpfilename)
else:
# Saving config file for model
current_datetime = datetime.now()
formatted_datetime = current_datetime.strftime("%Y%m%d-%H%M%S")
# config_dir = os.path.dirname(os.path.dirname(train_data_dir))
file_path = os.path.join(output_dir, f"{output_name}_{formatted_datetime}.json")
log.info(f"Saving training config to {file_path}...")
SaveConfigFile(
parameters=parameters,
file_path=file_path,
exclusion=["file_path", "save_as", "headless", "print_only"],
)
# log.info(run_cmd)
env = setup_environment()
# Run the command
executor.execute_command(run_cmd=run_cmd, env=env)
train_state_value = time.time()
return (
gr.Button(visible=False or headless),
gr.Button(visible=True),
gr.Textbox(value=train_state_value),
)
def finetune_tab(
headless=False,
config: KohyaSSGUIConfig = {},
use_shell_flag: bool = False,
):
dummy_db_true = gr.Checkbox(value=True, visible=False)
dummy_db_false = gr.Checkbox(value=False, visible=False)
dummy_headless = gr.Checkbox(value=headless, visible=False)
global use_shell
use_shell = use_shell_flag
with gr.Tab("Training"), gr.Column(variant="compact"):
gr.Markdown("Train a custom model using kohya finetune python code...")
# Setup Configuration Files Gradio
with gr.Accordion("Configuration", open=False):
configuration = ConfigurationFile(headless=headless, config=config)
with gr.Accordion("Accelerate launch", open=False), gr.Column():
accelerate_launch = AccelerateLaunch(config=config)
with gr.Column():
source_model = SourceModel(
headless=headless, finetuning=True, config=config
)
image_folder = source_model.train_data_dir
output_name = source_model.output_name
with gr.Accordion("Folders", open=False), gr.Group():
folders = Folders(headless=headless, finetune=True, config=config)
output_dir = folders.output_dir
logging_dir = folders.logging_dir
train_dir = folders.reg_data_dir
with gr.Accordion("Metadata", open=False), gr.Group():
metadata = MetaData(config=config)
with gr.Accordion("Dataset Preparation", open=False):
with gr.Row():
max_resolution = gr.Textbox(
label="Resolution (width,height)", value="512,512"
)
min_bucket_reso = gr.Textbox(label="Min bucket resolution", value="256")
max_bucket_reso = gr.Textbox(
label="Max bucket resolution", value="1024"
)
batch_size = gr.Textbox(label="Batch size", value="1")
with gr.Row():
create_caption = gr.Checkbox(
label="Generate caption metadata", value=True
)
create_buckets = gr.Checkbox(
label="Generate image buckets metadata", value=True
)
use_latent_files = gr.Dropdown(
label="Use latent files",
choices=[
"No",
"Yes",
],
value="Yes",
)
with gr.Accordion("Advanced parameters", open=False):
with gr.Row():
caption_metadata_filename = gr.Textbox(
label="Caption metadata filename",
value="meta_cap.json",
)
latent_metadata_filename = gr.Textbox(
label="Latent metadata filename", value="meta_lat.json"
)
with gr.Row():
full_path = gr.Checkbox(label="Use full path", value=True)
weighted_captions = gr.Checkbox(
label="Weighted captions", value=False
)
with gr.Accordion("Parameters", open=False), gr.Column():
def list_presets(path):
json_files = []
for file in os.listdir(path):
if file.endswith(".json"):
json_files.append(os.path.splitext(file)[0])
user_presets_path = os.path.join(path, "user_presets")
if os.path.isdir(user_presets_path):
for file in os.listdir(user_presets_path):
if file.endswith(".json"):
preset_name = os.path.splitext(file)[0]
json_files.append(os.path.join("user_presets", preset_name))
return json_files
training_preset = gr.Dropdown(
label="Presets",
choices=["none"] + list_presets(f"{presets_dir}/finetune"),
# elem_id="myDropdown",
value="none",
)
with gr.Accordion("Basic", open="True"):
with gr.Group(elem_id="basic_tab"):
basic_training = BasicTraining(
learning_rate_value=1e-5,
finetuning=True,
sdxl_checkbox=source_model.sdxl_checkbox,
config=config,
)
# Add SDXL Parameters
sdxl_params = SDXLParameters(
source_model.sdxl_checkbox, config=config
)
with gr.Row():
dataset_repeats = gr.Textbox(label="Dataset repeats", value=40)
train_text_encoder = gr.Checkbox(
label="Train text encoder", value=True
)
with gr.Accordion("Advanced", open=False, elem_id="advanced_tab"):
with gr.Row():
gradient_accumulation_steps = gr.Slider(
label="Gradient accumulate steps",
info="Number of updates steps to accumulate before performing a backward/update pass",
value=config.get("advanced.gradient_accumulation_steps", 1),
minimum=1,
maximum=120,
step=1,
)
block_lr = gr.Textbox(
label="Block LR (SDXL)",
placeholder="(Optional)",
info="Specify the different learning rates for each U-Net block. Specify 23 values separated by commas like 1e-3,1e-3 ... 1e-3",
)
advanced_training = AdvancedTraining(
headless=headless, finetuning=True, config=config
)
advanced_training.color_aug.change(
color_aug_changed,
inputs=[advanced_training.color_aug],
outputs=[
basic_training.cache_latents
], # Not applicable to fine_tune.py
)
with gr.Accordion("Samples", open=False, elem_id="samples_tab"):
sample = SampleImages(config=config)
global huggingface
with gr.Accordion("HuggingFace", open=False):
huggingface = HuggingFace(config=config)
global executor
executor = CommandExecutor(headless=headless)
with gr.Column(), gr.Group():
with gr.Row():
button_print = gr.Button("Print training command")
TensorboardManager(headless=headless, logging_dir=folders.logging_dir)
settings_list = [
source_model.pretrained_model_name_or_path,
source_model.v2,
source_model.v_parameterization,
source_model.sdxl_checkbox,
train_dir,
image_folder,
output_dir,
source_model.dataset_config,
logging_dir,
max_resolution,
min_bucket_reso,
max_bucket_reso,
batch_size,
advanced_training.flip_aug,
advanced_training.masked_loss,
caption_metadata_filename,
latent_metadata_filename,
full_path,
basic_training.learning_rate,
basic_training.lr_scheduler,
basic_training.lr_warmup,
dataset_repeats,
basic_training.train_batch_size,
basic_training.epoch,
basic_training.save_every_n_epochs,
accelerate_launch.mixed_precision,
source_model.save_precision,
basic_training.seed,
accelerate_launch.num_cpu_threads_per_process,
basic_training.learning_rate_te,
basic_training.learning_rate_te1,
basic_training.learning_rate_te2,
train_text_encoder,
advanced_training.full_bf16,
create_caption,
create_buckets,
source_model.save_model_as,
basic_training.caption_extension,
advanced_training.xformers,
advanced_training.clip_skip,
accelerate_launch.dynamo_backend,
accelerate_launch.dynamo_mode,
accelerate_launch.dynamo_use_fullgraph,
accelerate_launch.dynamo_use_dynamic,
accelerate_launch.extra_accelerate_launch_args,
accelerate_launch.num_processes,
accelerate_launch.num_machines,
accelerate_launch.multi_gpu,
accelerate_launch.gpu_ids,
accelerate_launch.main_process_port,
advanced_training.save_state,
advanced_training.save_state_on_train_end,
advanced_training.resume,
advanced_training.gradient_checkpointing,
gradient_accumulation_steps,
block_lr,
advanced_training.mem_eff_attn,
advanced_training.shuffle_caption,
output_name,
advanced_training.max_token_length,
basic_training.max_train_epochs,
basic_training.max_train_steps,
advanced_training.max_data_loader_n_workers,
advanced_training.full_fp16,
advanced_training.color_aug,
source_model.model_list,
basic_training.cache_latents,
basic_training.cache_latents_to_disk,
use_latent_files,
advanced_training.keep_tokens,
advanced_training.persistent_data_loader_workers,
advanced_training.bucket_no_upscale,
advanced_training.random_crop,
advanced_training.bucket_reso_steps,
advanced_training.v_pred_like_loss,
advanced_training.caption_dropout_every_n_epochs,
advanced_training.caption_dropout_rate,
basic_training.optimizer,
basic_training.optimizer_args,
basic_training.lr_scheduler_args,
advanced_training.noise_offset_type,
advanced_training.noise_offset,
advanced_training.noise_offset_random_strength,
advanced_training.adaptive_noise_scale,
advanced_training.multires_noise_iterations,
advanced_training.multires_noise_discount,
advanced_training.ip_noise_gamma,
advanced_training.ip_noise_gamma_random_strength,
sample.sample_every_n_steps,
sample.sample_every_n_epochs,
sample.sample_sampler,
sample.sample_prompts,
advanced_training.additional_parameters,
advanced_training.loss_type,
advanced_training.huber_schedule,
advanced_training.huber_c,
advanced_training.vae_batch_size,
advanced_training.min_snr_gamma,
weighted_captions,
advanced_training.save_every_n_steps,
advanced_training.save_last_n_steps,
advanced_training.save_last_n_steps_state,
advanced_training.log_with,
advanced_training.wandb_api_key,
advanced_training.wandb_run_name,
advanced_training.log_tracker_name,
advanced_training.log_tracker_config,
advanced_training.scale_v_pred_loss_like_noise_pred,
sdxl_params.sdxl_cache_text_encoder_outputs,
sdxl_params.sdxl_no_half_vae,
advanced_training.min_timestep,
advanced_training.max_timestep,
advanced_training.debiased_estimation_loss,
huggingface.huggingface_repo_id,
huggingface.huggingface_token,
huggingface.huggingface_repo_type,
huggingface.huggingface_repo_visibility,
huggingface.huggingface_path_in_repo,
huggingface.save_state_to_huggingface,
huggingface.resume_from_huggingface,
huggingface.async_upload,
metadata.metadata_author,
metadata.metadata_description,
metadata.metadata_license,
metadata.metadata_tags,
metadata.metadata_title,
]
configuration.button_open_config.click(
open_configuration,
inputs=[dummy_db_true, dummy_db_false, configuration.config_file_name]
+ settings_list
+ [training_preset],
outputs=[configuration.config_file_name]
+ settings_list
+ [training_preset],
show_progress=False,
)
# config.button_open_config.click(
# open_configuration,
# inputs=[dummy_db_true, dummy_db_false, config.config_file_name] + settings_list,
# outputs=[config.config_file_name] + settings_list,
# show_progress=False,
# )
configuration.button_load_config.click(
open_configuration,
inputs=[dummy_db_false, dummy_db_false, configuration.config_file_name]
+ settings_list
+ [training_preset],
outputs=[configuration.config_file_name]
+ settings_list
+ [training_preset],
show_progress=False,
)
training_preset.input(
open_configuration,
inputs=[dummy_db_false, dummy_db_true, configuration.config_file_name]
+ settings_list
+ [training_preset],
outputs=[gr.Textbox(visible=False)] + settings_list + [training_preset],
show_progress=False,
)
run_state = gr.Textbox(value=train_state_value, visible=False)
run_state.change(
fn=executor.wait_for_training_to_end,
outputs=[executor.button_run, executor.button_stop_training],
)
executor.button_run.click(
train_model,
inputs=[dummy_headless] + [dummy_db_false] + settings_list,
outputs=[executor.button_run, executor.button_stop_training, run_state],
show_progress=False,
)
executor.button_stop_training.click(
executor.kill_command,
outputs=[executor.button_run, executor.button_stop_training],
)
button_print.click(
train_model,
inputs=[dummy_headless] + [dummy_db_true] + settings_list,
show_progress=False,
)
configuration.button_save_config.click(
save_configuration,
inputs=[dummy_db_false, configuration.config_file_name] + settings_list,
outputs=[configuration.config_file_name],
show_progress=False,
)
# config.button_save_as_config.click(
# save_configuration,
# inputs=[dummy_db_true, config.config_file_name] + settings_list,
# outputs=[config.config_file_name],
# show_progress=False,
# )
with gr.Tab("Guides"):
gr.Markdown("This section provide Various Finetuning guides and information...")
top_level_path = rf'"{scriptdir}/docs/Finetuning/top_level.md"'
if os.path.exists(top_level_path):
with open(os.path.join(top_level_path), "r", encoding="utf-8") as file:
guides_top_level = file.read() + "\n"
gr.Markdown(guides_top_level)