Spaces:
Sleeping
Sleeping
let ws; | |
let lossChart; | |
let accuracyChart; | |
function showTrainingForm(type) { | |
const singleForm = document.getElementById('single-model-form'); | |
const compareForm = document.getElementById('compare-models-form'); | |
if (type === 'single') { | |
singleForm.classList.remove('hidden'); | |
compareForm.classList.add('hidden'); | |
} else { | |
singleForm.classList.add('hidden'); | |
compareForm.classList.remove('hidden'); | |
} | |
} | |
function initializeCharts() { | |
const lossData = [{ | |
name: 'Training Loss', | |
x: [], | |
y: [], | |
type: 'scatter' | |
}, { | |
name: 'Validation Loss', | |
x: [], | |
y: [], | |
type: 'scatter' | |
}]; | |
const accuracyData = [{ | |
name: 'Training Accuracy', | |
x: [], | |
y: [], | |
type: 'scatter' | |
}, { | |
name: 'Validation Accuracy', | |
x: [], | |
y: [], | |
type: 'scatter' | |
}]; | |
Plotly.newPlot('loss-plot', lossData, { | |
title: 'Training and Validation Loss', | |
xaxis: { title: 'Iterations' }, | |
yaxis: { title: 'Loss' } | |
}); | |
Plotly.newPlot('accuracy-plot', accuracyData, { | |
title: 'Training and Validation Accuracy', | |
xaxis: { title: 'Iterations' }, | |
yaxis: { title: 'Accuracy (%)' } | |
}); | |
} | |
function updateCharts(data) { | |
const iteration = data.epoch * data.batch; | |
Plotly.extendTraces('loss-plot', { | |
x: [[iteration], [iteration]], | |
y: [[data.train_loss], [data.val_loss]] | |
}, [0, 1]); | |
Plotly.extendTraces('accuracy-plot', { | |
x: [[iteration], [iteration]], | |
y: [[data.train_acc], [data.val_acc]] | |
}, [0, 1]); | |
// Update training logs | |
const logsDiv = document.getElementById('training-logs'); | |
logsDiv.innerHTML = ` | |
<p>Epoch: ${data.epoch + 1}</p> | |
<p>Training Loss: ${data.train_loss.toFixed(4)}</p> | |
<p>Training Accuracy: ${data.train_acc.toFixed(2)}%</p> | |
<p>Validation Loss: ${data.val_loss.toFixed(4)}</p> | |
<p>Validation Accuracy: ${data.val_acc.toFixed(2)}%</p> | |
`; | |
} | |
async function trainSingleModel() { | |
const config = { | |
kernels: [ | |
parseInt(document.getElementById('kernel1').value), | |
parseInt(document.getElementById('kernel2').value), | |
parseInt(document.getElementById('kernel3').value) | |
], | |
optimizer: document.getElementById('optimizer').value, | |
batch_size: parseInt(document.getElementById('batch_size').value), | |
epochs: parseInt(document.getElementById('epochs').value) | |
}; | |
// Show progress section and initialize charts | |
document.getElementById('training-progress').classList.remove('hidden'); | |
initializeCharts(); | |
// Connect to WebSocket | |
ws = new WebSocket(`ws://${window.location.host}/ws/train`); | |
ws.onmessage = function(event) { | |
const data = JSON.parse(event.data); | |
updateCharts(data); | |
}; | |
try { | |
const response = await fetch('/api/train_single', { | |
method: 'POST', | |
headers: { | |
'Content-Type': 'application/json', | |
}, | |
body: JSON.stringify(config) | |
}); | |
const data = await response.json(); | |
if (data.status === 'success') { | |
alert('Training completed successfully!'); | |
} | |
} catch (error) { | |
console.error('Error:', error); | |
alert('Error during training. Please check console for details.'); | |
} | |
} | |
async function compareModels() { | |
const config = { | |
model1: { | |
kernels: [ | |
parseInt(document.getElementById('model1_kernel1').value), | |
parseInt(document.getElementById('model1_kernel2').value), | |
parseInt(document.getElementById('model1_kernel3').value) | |
], | |
optimizer: document.getElementById('model1_optimizer').value, | |
batch_size: parseInt(document.getElementById('model1_batch_size').value), | |
epochs: parseInt(document.getElementById('model1_epochs').value) | |
}, | |
model2: { | |
kernels: [ | |
parseInt(document.getElementById('model2_kernel1').value), | |
parseInt(document.getElementById('model2_kernel2').value), | |
parseInt(document.getElementById('model2_kernel3').value) | |
], | |
optimizer: document.getElementById('model2_optimizer').value, | |
batch_size: parseInt(document.getElementById('model2_batch_size').value), | |
epochs: parseInt(document.getElementById('model2_epochs').value) | |
} | |
}; | |
// Show comparison progress section | |
document.getElementById('comparison-progress').classList.remove('hidden'); | |
initializeComparisonCharts(); | |
try { | |
const response = await fetch('/api/train_compare', { | |
method: 'POST', | |
headers: { | |
'Content-Type': 'application/json', | |
}, | |
body: JSON.stringify(config) | |
}); | |
const data = await response.json(); | |
if (data.status === 'success') { | |
displayComparisonResults(data); | |
alert('Model comparison completed successfully!'); | |
} | |
} catch (error) { | |
console.error('Error:', error); | |
alert('Error during model comparison. Please check console for details.'); | |
} | |
} | |
function initializeComparisonCharts() { | |
const lossData = [{ | |
name: 'Model A Loss', | |
x: [], | |
y: [], | |
type: 'scatter' | |
}, { | |
name: 'Model B Loss', | |
x: [], | |
y: [], | |
type: 'scatter' | |
}]; | |
const accuracyData = [{ | |
name: 'Model A Accuracy', | |
x: [], | |
y: [], | |
type: 'scatter' | |
}, { | |
name: 'Model B Accuracy', | |
x: [], | |
y: [], | |
type: 'scatter' | |
}]; | |
Plotly.newPlot('comparison-loss-plot', lossData, { | |
title: 'Loss Comparison', | |
xaxis: { title: 'Iterations' }, | |
yaxis: { title: 'Loss' } | |
}); | |
Plotly.newPlot('comparison-accuracy-plot', accuracyData, { | |
title: 'Accuracy Comparison', | |
xaxis: { title: 'Iterations' }, | |
yaxis: { title: 'Accuracy (%)' } | |
}); | |
} | |
function displayComparisonResults(data) { | |
const logsDiv = document.getElementById('comparison-logs'); | |
logsDiv.innerHTML = ` | |
<div class="comparison-model"> | |
<h4>Model A</h4> | |
<p>Final Loss: ${data.model1_results.history.train_loss.slice(-1)[0].toFixed(4)}</p> | |
<p>Final Accuracy: ${data.model1_results.history.train_acc.slice(-1)[0].toFixed(2)}%</p> | |
<p>Model Name: ${data.model1_results.model_name}</p> | |
</div> | |
<div class="comparison-model"> | |
<h4>Model B</h4> | |
<p>Final Loss: ${data.model2_results.history.train_loss.slice(-1)[0].toFixed(4)}</p> | |
<p>Final Accuracy: ${data.model2_results.history.train_acc.slice(-1)[0].toFixed(2)}%</p> | |
<p>Model Name: ${data.model2_results.model_name}</p> | |
</div> | |
`; | |
} | |
function displayResults(data) { | |
const resultsDiv = document.getElementById('training-results'); | |
// Display training results | |
} |